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ABSTRACT

The marsupial pouch is a key adaptation for offspring protection and development, yet its
evolutionary drivers remain unclear. While body size matters, the role of litter size is less
understood. Using phylogenetic comparative methods, we investigated the evolutionary
relationship between pouch presence, body mass, and litter size across 195 marsupial
species. Our results reveal that pouch presence is strongly phylogenetically conserved
and positively correlated with larger body size, with all large-bodied species possessing
a pouch. By contrast, pouch presence is negatively associated with litter size, with species
with larger litters typically lacking a pouch, while those with smaller litters retdin one,
We found that body mass evolves faster in pouched lineages. Ancestral state
reconstructions suggest multiple independent origins of the pouch, although the ancestral
marsupial condition remains uncertain, but most likely corresponding to pouch absence.
These findings support the hypothesis that the pouch evolves in-response to trade-offs
between offspring quantity and maternal investment,, aligning with broader patterns of
parental care strategies. Our work provides anew vision for the evolutionary trajectory

of one of the most conspicuous marsupial features.

KEYWORDS: Mammals, evolution, marsupium, offspring

INTRODUCTION

Protective pouches for offspring have evolved across multiple vertebrate lineages,
show¢asingtheir broad evolutionary significance as a successful reproductive strategy for
securing the development of young (Tyndale-Biscoe & Renfree, 1987a; 1987b).
Protective pouches are seen in disparate groups such as marsupial frogs (Hemiphractidae)

(del Pino 1980; 2018), but also in fishes, as seahorses and pipefish (Syngnathidae)
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(Dudley et al., 2022; Harada et al., 2022), where they serve as critical adaptations that
increase offspring survival. These structures provide various benefits, including physical
protection, stability during parental movement, concealment from predators, and
environmental regulation for the developing young. In mammals, it is commonly thought
that protective pouches have evolved independently in monotremes, like echidnas
(Tachyglossidae) (Augee et al., 2006), and many times in marsupials (Kirsch, 1977;

Tyndale-Biscoe, 2005; Voss and Jansa, 2009).

In marsupial mammals, pouches (or marsupium) are folds of skin in the abdomen with
varying degrees of enclosure across species, working as a cutaneous pocket enyeloping
the mammary teats and newborns. Marsupial pouches show a large diversity“of)shapes
and forms, but overall, they can be classified as open folds, temporary pouches (breeding-
season only), and permanent pouches, having functional differences,in protection and
lactation access (Russell, 1982; Tyndale-Biscoe, 2005). For thesé reasons, pouches are
typically associated with females, where they provide protection and support to the
altricial neonates; however, they are also présent in“males of some species as scrotal
pouches, such as in water opossums (Chironectes minimus), marsupial moles
(Notoryctidae), and the recently extinct thylacines (Thylacinus cynocephalus) (Enders,
1935; Pocock, 1926; Sweet, 1907): In marsupials, the pouch serves multiple reproductive
functions, with its importance varying across different species, as reflected by the
diversity of pouch structures. One primary role is direct physical protection from the
external environment (Russell, 1982). Additionally, the pouch ensures warmth and stable
humidity;which facilitates effective integumental gas exchange (Kubota et al., 1989) and
suppeorts the survival of ectothermic newborns (Edwards et al., 2012; Edwards & Deakin,
2013). The pouch is also involved in chemical defense, as pouch fluids contain

antimicrobial proteins that inhibit bacterial growth (Ambatipudi et al., 2008; Bobek &
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Deane, 2001; Edwards et al., 2012). By maintaining a constant microenvironment, the
pouch enables neonates to develop safely until weaning, at which point they gain fur,
endothermy, and mobility (Russell, 1982; Smith & Keyte, 2020; Sobral & Guilhon,
2016). Because the pouch is directly associated with the mother, it allows for stable
maternal contact, ensuring that developing young remain at a temperature comparable to
that of the adult, thus addressing the challenges of ectothermy in early development
(Hulbert, 1988). However, not all marsupials possess pouches. Many didelphids, all living
caenolestids, and some dasyurids are pouchless (Russell, 1982; Tyndale-Biscoe &

Renfree, 1987a; Woolley, 1974).

Evolutionary hypotheses regarding pouch presence in marsupials have varied“over time.
For a long time, pouch presence was linked to epipubic bones, suggesting thatthese bones
would serve as a functional pouch support (Coues, 1872; Elftman, 1929; Tyson, 1698).
However, this hypothesis has fallen out of favor, as the pouch,appears to be a relatively
recent adaptation compared to the epipubic bones, which are thought to be a
plesiomorphic characteristic of mammals, besides.thepouch also lacking direct muscular
attachment with the epipubic bones (Guilhon'et al., 2021; Szalay, 1982; Tyndale-Biscoe
& Renfree, 1987b; White, 1989).“Another hypothesis posits that body size plays a key
role, with larger marsupials generally having pouches, while smaller species often do not
(Tyndale-Biscoe, 2005). This:suggests that body size may drive the evolution of the pouch
in marsupials, orat least in some clades like Didelphimorphia (Astaa, 2015; Harder, 1992;
Voss & Jansa,"2021). Body size is frequently considered a crucial factor influencing the
evolutionaryshistory of animals, as increases in size often demand structural innovations
while simultaneously allowing further growth, being both a driver and outcome of the
evolutionary process (Bonner, 2011). For larger marsupial species, whose young require

extended periods of pouch life, attaining larger sizes and needing to maintain teat
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attachment for longer periods (Russell, 1982), a pouch is thought to provide essential

protection and stability.

However, pouch presence in marsupials cannot be solely explained by body size. Some
smaller marsupials also possess pouches, suggesting that other factors may play a role in
their presence. Given that evolutionary novelties rarely arise due to a single selective
pressure, it seems likely that other factors, such as litter size, could also influence pouch
evolution in marsupials. In species with smaller litters, the presence of a pouch may
increase the survival rate of the young by providing additional protection. This aligns
with different patterns of parental care associated with pouch types, as described by
Russell (1982). Species with large litters and small pouches (Pattern A).leave their
underdeveloped young in nests early, whereas those with fewer<young/and well-
developed pouches (Pattern B) retain them in the pouch for longer.before transferring
them to a nest. In species with large pouches and typically a single offspring (Pattern C),
the young remain in the pouch until they are mobile.enough-to follow the mother. These
patterns suggest that both litter size and developmental strategy contribute to pouch
evolution. Moreover, a strong phylogenéticisignal was recovered for life history traits
such as pouch presence, body size,«and litter size in Didelphidae (Battistella et al., 2019),
suggesting that evolutionary-Constraints may also shape the evolution of these traits in
marsupials. Thus, this study.aims to determine whether body size and litter size predict

pouch presence in marsupials, while accounting for phylogenetic relationships.
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MATERIALS AND METHODS

Data

We gathered data on pouch presence, body mass, and litter size for 195 taxa, sampling all
19 extant families of marsupials (Supplementary Material Tables S1-S3). We followed
the taxonomy of the Mammal Diversity Database (2022), except for Dromiciops
gliroides, which we consider as the single species of the genus following Palma and

Valladares-Gomez (2015).

Data for the presence of a pouch was obtained from the literature, complemented by
personal communications when information about a taxon was dubious) or sparse
(Supplementary Material Table S1). We based the presence or absence of the pouch on
Woolley’s (1974) and Russell’s (1982) descriptions. For analytic purposes, we considered
type 1 pouch as “absent”. This pouch type is also calledintermediate pouch”, since it
only develops in the breeding season, forming ridges of skin that often do not fully cover
the young (Tyndale-Biscoe & Renfree; 11987a; Woolley, 1974). Types 2-6 were
considered “present”. We compiled body mass data (in grams), a proxy for body size,
from Wilson and Mittermeier (2015) and Weisbecker et al. (2013) (Supplementary
Material Table S2). When, available, we considered the entire range of body mass
variation per species, and.considered the mid-point of the range as the mean body mass
value. For four of the 195 species (~2%), only the mean body mass value was available.
Litter_size“data (mean and range) were obtained from the literature (Supplementary
Material Table S3) and the PanTheria database (Jones et al., 2009). For 91 of 195 species

(~47%), only the mean litter size was available, either because the litter size is invariably
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one for the species (58 species, ~30%), or because ranges were not available (33 species,

~17%).

In order to account for trait uncertainty in analyses, we randomly sampled body mass and
litter size values from uniform distributions of the range of variation of each species,
using the mean trait value when the range was not available. In addition to these 100
simulated data sets, which were applied to calculate phylogenetic signal and perform
phylogenetic regressions, we also gathered a dataset of mean trait values, which was used
in model fitting analyses. Body mass data was converted to a logio scale, to account for
the fact that it spans five orders of magnitude. For the regressions, logio body mass and
litter size values were standardized as Z-scores (i.e., mean = 0 and standard.deviation =

1) (Symonds & Blomberg, 2014).

Trees

We obtained 100 time-calibrated trees from the tip-dated, DNA-only, Bayesian posterior

sample from Upham et al. (2019, https://vertliféiorg/data/mammals) and its respective

major clade credibility tree (MCC). The trees were pruned to the taxonomic sample for

which data were available.

Phylogenetic signal

We inspected the phylogenctic signal for individual traits —— pouch, body mass, and
litter size — and_for all their combinations, with the M statistic, a metric that provides a
unified framework to assess phylogenetic signal of discrete, continuous, and combined
sets ofitraits; based on distance matrices obtained with Gower’s distance (Yao & Yuan,
2025a).’M statistic ranges from 0 to 1, representing the lowest and highest degree of
phylogenetic signal, respectively. These tests were conducted in the R programming

environment (R Core Team, 2025), with the function phylosignal M of the package
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phylosignalDB (Yao & Yuan, 2025b), utilizing 999 random permutations to assess
significance (a = 0.05). The M statistic was calculated over 100 paired combinations of
simulated datasets and posterior sample trees, and the results were summarized by the

mean and the 95% confidence interval (CI).

Phylogenetic regressions

To assess the degree of multicollinearity between body mass and litter size data, we
calculated the variance inflation factor (VIF) after conducting preliminary logistic
regressions. For these procedures, we used the functions g/m and vif from the packages
stats and car (Fox & Weisberg, 2019), respectively. The VIF values for these variables
and their interaction were only moderate (< 3), allowing them to be-ineluded together in
subsequent regressions. We then carried out logistic regressionsrusing phylogenetic
generalized linear mixed models (PGLMM; Ives & Helmus, 2011), treating pouch
presence as the response variable, body mass“and litter size as fixed effects, and
phylogeny as a random effect. For the regressions, we utilized the function
pglmm_compare from the R package phyr(lves et al., 2020). We explored five alternative
models: 1) a null model, regressing,theypouch presence over its intercept, to represent the
absence of influence of theseentinuous variables, ii) adding body mass as an independent
variable, iii) adding litter size as an independent variable, iv) adding both body mass and
litter size as independent variables, but not allowing for an interaction between them, and
finally, v).adding both variables and allowing for their interaction. Model fitting was
assessed\with the Bayesian information criterion (BIC) (Schwarz, 1978), comparing the
telative weights of models (BICw) and ABIC (< 2). As for the analysis of phylogenetic
signal, all regressions were conducted across 100 paired combinations of simulated

datasets and posterior sample trees, with model parameters, BIC, and BICw summarized
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by their means and 95% Cls. In addition to that, for the regression coefficients, we also
calculated a second confidence interval based on Rubin’s rules (Rubin, 1987). This
confidence interval, originally developed in the context of multiple imputation, accounts

for both within- and among-dataset estimation uncertainty.

Correlated evolution of the pouch with body mass

Recently, Boyko et al. (2023) proposed a novel method for jointly modelling the evolution
of discrete and continuous traits. Different from previous approaches in which the discrete
trait is painted to the tree and the parameters of the continuous trait are estimated
assuming fixed regimes, this new approach considers that both traits evolve
synergistically, affecting one another. For that, the discrete trait is evolvedunto the tree
using stochastic character maps, and discrete and continuous trait parameters are jointly
inferred. When both traits evolve in a correlated fashion, fixingany of the traits a priori
could potentially mislead the inferences (Boyko et al., 2023)."This new implementation
can be used with alternative continuous and discrete models of trait evolution, including
discrete hidden state models, which allows foramore rigorous assessment of alternative
hypotheses based on both character-depéndentiand character-independent models (Boyko
et al., 2023). Currently, it is notpossible to include both continuous traits as correlated
variables in a single analysis, so we focused on the correlation of pouch presence with
body mass, which received stronger support in regression analyses. Initial attempts to
correlate pouch¢presence and litter size led to unstable results and indicated parameter
unidentifiability,spossibly related to the complexity of the models associated with the
reduced variability of litter size data, if compared to that of body mass. Moreover, these
are very time-consuming analyses. Therefore, they were conducted solely considering the
dataset with trait means and the MCC tree. We used 100 stochastic character maps to

account for mapping uncertainty, and conducted the analyses with 10 random starts to try
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to avoid local optima. For character-independent models, we sampled nodes and used

adaptive sampling, as recommended in the function documentation.

We considered 28 models in total, which can be separated into four sets. The first set
comprises character-dependent models (CD), in which the discrete trait evolves either
according to the equal rates (ER), or to the all rates different (ARD) model (Revell et al.,
2025), whereas the continuous trait evolves according to one of the following models:
multi-rate Brownian motion model (BMV), multi-rate Ornstein-Uhlenbeck (OUV),
multi-optima OU (OUM), or an OU model that allows both rates and optima values_to
vary (OUMYV) (Beaulieu et al., 2012; Felsenstein, 1985; Hansen, 1997). For CD models,
different parameters of the continuous models are associated with the alternative discrete
trait states, and represent the case of correlation between the pouch presence/absence with
the properties (rate of evolution or optimum value) of the continuous trait. Considering
all possible combinations of discrete and continuous models;ithis first set included eight

models in total (Supplementary Material Table S4),

A second set of models considered character-independent null hypotheses (CID), in
which the continuous trait evolves according to either a uniform BM or a uniform OU
model, with changes in their parameter values being independently estimated from the
observed states of the discrete character, which evolve uniformly as well. These models
represent the total absence.of’correlation between the evolution of the pouch and that of
the continuousvariable. A total of four CID models were evaluated (Supplementary

Material Table.S84).

A _third set comprises the CID+ models, in which the properties of the continuous trait
vary_ according to changes between observable and hidden pairs of states of the discrete
character. These models allow for variation in rates or optimum values in the continuous

trait that are unrelated to the presence or absence of the pouch. It is noteworthy that, for
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CID+ (as well as for HYB, see below) models, ER and ARD definitions apply only for
back-and-forth transitions between observed states or between hidden states, but these
two pairs of rates are assumed to be different, as much as the back-and-forth transitions
between observed and hidden pairs of states. These total 8 models (Supplementary

Material Table S4).

Lastly, the fourth set comprises hybrid models (HYB), in which both observed and hidden
states are associated with variable rates or optimum values estimated for the continuous
trait, corresponding to the scenario that additional variation, beyond the simple presence
or absence of the pouch, is also correlated with the evolutionary patterns of the continuous
variable. A total of eight HYB models were considered (Supplementary Material Table

S4).

Model fitting was carried out with the function hOUwie of the package’OUwie (Beaulieu
& O’Meara, 2025), and model support was assessed with BICw, with all models with
BICw > 0.1 regarded as best-fitting models. The function dent walk of the package
dentist (Boyko & O’Meara, 2024) was used.toycalculate the 95% Cls for the parameters
of the best-fitting models, using 2,0004stepsy”and monitoring the stabilization of the
estimated intervals. After that, we.estimated the ancestral states for pouch presence under
the best-fitting models. To make plots, we relied on functions of the packages phytools

(Revell, 2024) and ggplot2,(Wickham, 2016).

RESULTS

Phylegenetic signal

Pouch presence, body mass, litter size, and their combinations all exhibited significant

phylogenetic signals across the 100 combinations of datasets and trees (Table 1). Among
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individual traits, body mass showed the strongest phylogenetic signal, closely followed
by pouch presence, while litter size displayed a slightly weaker signal. The combination
of the two continuous predictors, body mass and litter size, yielded the highest overall
phylogenetic signal. Combinations of pouch presence with either or both predictors also

showed strong signals, comparable to those of the individual traits (Table 1).

Association of the pouch with body size and litter size

The results of the phylogenetic logistic regressions indicated that the two models that
include both body mass and litter size as predictors provided a better explanation of‘the
data, with the sum of the mean BICw values for the other three models being 0.01.(Table
2). The model lacking an interaction term was best supported relative to’that including
this parameter, with mean BICw values of 70 and 29, respectively, but'being equivalent
per the ABIC threshold. Since the model without an interaction‘explains the data slightly
better and is less parametrized, it was favored here. The slope was positive for body mass,
indicating that large-sized marsupials are more frequently associated with the presence of
the pouch (Figure 1A, B), even after accounting for variation across dataset—tree
combinations and estimation uncertainties. (Table 2). Although the pouch is present in
species across the entire size range sampled here, its absence is observed only in relatively
smaller species, while all relatively larger species possess a pouch (Figure 1A). In
contrast, pouch presence is, on average, negatively correlated with litter size (Figure 1A,
C), with species(at the higher end of the range of litter sizes never presenting a pouch,
whereas those with very small litters always have it (Figure 1A). The uncertainty
estimated for regression coefficients across the 100 combinations of datasets and trees is
smally teinforcing the pattern of a negative correlation. However, when estimation
uncertainty is also accounted for, the CI of the slope values for litter also includes small

positive values (Table 2).
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The correlated evolution of the pouch presence and body mass is further supported by the
hOUwie analyses. Two best-fitting models were nearly tied in terms of BICw support—
CD_ER_OUMV (BICw = 0.47; Table 3) and CD_ER BMYV (BICw = 0.46; Table 3). All
other models were associated with BICw values < 0.1, and were not further considered.
Parameter values for the best-fitting models and their uncertainty are summarized in
Table 4. The OUMYV model led to a very low attraction (o) estimate, implying an average
half-live of more than 600 million years, many times longer than the tree height. In terms
of parameter interpretation, this makes this model collapse to a BMV model. Moreover;
the OUMYV model recovered unreasonably high values of 6 associated with the presence
of a pouch (Table 4). For those reasons, we focus on the parameter estimates of. BMV
here. This model indicates that, although gains and losses of the pouch occur at equal
rates (0.004), rates of body mass evolution are dependent on the presenice or absence of
the pouch. When the pouch was present, body mass evolyved, 'on average, about three

times faster (0.017) than when the pouch was absent (0.005):

Ancestral state estimations

The ancestral pouch condition and subsequent evolution slightly varied depending on
which of the two best-fitting modelsiare considered. However, as stated above, there are
clear indications that the OUVM model collapses to a BMV in our analyses; therefore,
we focus our resultsc on therpatterns obtained by the latter model (Figure 2A). The
ancestral states obtained under the OUMYV model are depicted for completeness (Figure

2B).

The ancestral marsupial condition and the condition in the node uniting Didelphimorphia
and Australidelphia are nearly undefined, with pouch absence being slightly more likely

(Figure 2A). Pouch absence is maintained in Paucituberculata and Didelphimorphia, with
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independent acquisitions of the pouch in Didelphini, Caluromyinae (lost again in

Caluromys philander), and Australidelphia.

Among australidelphians, the pouch was lost in Microbiotheria (i.e., Dromiciops
gliroides), but retained as the most likely ancestral condition of Eomarsupialia,
Diprotodontia, and Agreodontia. Within the latter clade, the ancestral condition is also
retained in Notoryctemorphia (i.e., Notoryctes typhlops),
Peramelemorphia+Dasyuromorphia, Peramelemorphia, and Dasyuromorpha (Figure

2A).

The ancestral condition in Dasyuridae and Sminthopsinae (lost in Ningaui ridei) is also
the retention of the pouch, which would have been lost independently in Myrmecobiidae
and in Dasyurinae, to be regained in the clade uniting the genera Phascolosoréx, Dasyurus

and Sarcophilus, and lost again two times among some of its speeies (Figure 2A).

DISCUSSION

Our findings provide new insights into the evolutionary dynamics of the marsupial pouch,
highlighting its complex relationship with life-history traits. Larger marsupials are more
likely to have a pouch, while¢ smaller species may lack one. Conversely, pouch presence
is negatively correlated with litter size, as species with larger litters usually do not have a
pouch, whereas those with smaller litters do. Pouch presence is associated with both body
mass and littersize, and body mass evolves more rapidly in species with a pouch. The

ancestral'marsupial condition is still uncertain, but it was most likely pouchless.

Kirsch (1977) already proposed that pouches emerged independently in different
marsupial lineages. Our findings support this idea, suggesting that the pouch emerged at

least three times in the ancestors of major marsupial clades. Despite the uncertainty
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related to the basal-most nodes, our results indicate that the pouch was clearly absent in
the ancestor of Didelphimorphia, but was gained independently in Didelphini and
Caluromyinae, in addition to the acquisition in the ancestor of Australidelphia, being
subsequently retained in most taxa of this clade. Among Dasyuromorphia, notably,
Myrmecobiidae and most Dasyurinae lacked the pouch, despite a few secondary
acquisitions (e.g., Dasyurus maculatus and Sarcophilus harrisii), whereas Sminthopsinae

have a pouch, with only one exception (Ningaui ridei).

Building on previous work, our findings emphasize the important association between
pouch presence and parental care strategies, particularly in species with small”litters,
While Battistella et al. (2019) reported that litter size in didelphid marsupials-isishaped
by body size, climate, and phylogenetic proximity, with no signifieant'role for pouch
presence, we found a broader, contrasting pattern across marsupials. Specifically, our
results suggest a negative correlation between litter size and pouch presence: large-litter
species (Pattern A) often lack a pouch, while speciesawith small litters (Patterns B and C)
consistently possess one. This supports the framework proposed by Russell (1982), which
links the presence of a well-developed ‘pouch to species that invest more heavily in
individual offspring (K-selection sttategy; Pianka, 1970), maintaining them in the pouch
through critical stages of development. In these cases, the pouch acts as a functional
extension of maternal care, substituting for behaviors such as nest building and retrieving
young, which are more prominent in species with reduced or absent pouches. Thus, the
evolution ofsthe pouch appears to be an adaptive response to the energetic and
developmental” demands associated with producing and rearing fewer altricial young.
However, as size is also highly correlated with the presence of pouch in marsupials
(Russell, 1982), and since both showed relatively stronger phylogenetic signals, size-

mediated phylogenetic inertia possibly also shaped the overall pattern of the marsupium
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evolution of major clades. Litter size, on the other hand, being more labile, may be a
driver of particular life-history adaptations within these major clades. Moreover, an even
stronger phylogenetic signal was recovered for the combination of body mass and litter
size, and the combinations of these two predictors with pouch presence also yielded
significant phylogenetic signal, suggesting a complex interplay of these variables shaping

and being shaped by marsupial patterns of phylogenetic inertia.

The pattern observed among New World marsupials, is highly consistent with the
relationship between body size and pouch presence: larger species invariably retain
pouches, even with larger litters (e.g., species of Didelphis, with up to 21 young), while
small species lack pouches altogether, even species with relatively small littets (e.g.,
Marmosa tyleriana, with an average of three, and Monodelphis adusta, with/an average
of four young) (Astta, 2015; Jones et al., 2009). Most didelphids.seem to follow r-
selected strategies independently of pouch presence or body, size (Fisher et al., 2001).
This highlights the complexity of the relationships-identified by our analyses and the
importance of different evolutionary histories in shaping and directing evolutionary

patterns of phenotypic characteristics such as,the’pouch.

Some noteworthy partial exceptions, to,the general rule can also be observed among
australidelphians. In Diprotedontia, even smaller species (e.g., Burramyidae,
Acrobatidae, Petauridae) retain well-developed pouches (Wilson & Mittermeier, 2015),
a likely result ofiphylogenetic inertia. Despite their reduced body size, including some of
the smallest ‘speecies among marsupials, these species have proportionally few young
compared to other tiny marsupials, typically producing 1-4 offspring per litter. This seems
to beythe maximum litter size in Diprotodontia, mirroring the “quality over quantity”
strategy seen in other K-selected diprotodontian marsupials (e.g., koalas, Phascolarctos

cinereus, 1-2 offspring). This suggests that phylogenetic constraints could maintain both
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pouch retention and low fecundity in these lineages, despite miniaturization in some

species, overriding typical r-selected expectations for small-bodied taxa.

The same cannot be said about other australidelphian marsupials, such as dasyurids. Our
results indicate that the pouch appears to be an early acquisition in Australidelphia, lost
in small-bodied dasyurids with large litters. This pattern is comparable to the one found
in some small New World marsupials, sometimes associated with semelparous
reproductive patterns (e.g., Marmosops) (Leiner et al., 2008). Among australidelphians
(e.g., the genus Antechinus), the same pattern is observed (Braithwaite & Lee, 1979), in
which adults live for very brief periods, sometimes less than a year, yet produce’a large
number of offspring. This suggests that, in Australidelphia, there is‘.an™inertial
phylogenetic tendency to maintain the pouch, even in small species, asdong,as.the number
of young is relatively small. The evolution of highly committed r-strategists, with a high
number of young, is likely a strong pressure to break this inertia and allow the loss of the
pouch in these taxa. Nevertheless, we did find exceptions-in dasyurids like Planigale
ingrami, one of the smallest species of marsupials, with’a well-developed pouch, but with

up to 12 teats and 8 young per litter (Baker, 2015).

However, it should be noted thatforevery partial exception highlighted above, when the
relationship with body mass does net strictly hold, the one related to litter size does. This
indicates that although both variables more often than not acted synergistically to predict
pouch presence,in some instances a single variable, associated with phylogenetic inertia,
is already. a goodpredictor of the observed pouch pattern. Moreover, these exceptions do
not overrule the general pattern observed for most species, which was supported by the

results of the phylogenetic comparative analyses presented here.

One of the main challenges in studying the evolution of soft tissue structures, such as the

marsupial pouch, is their poor preservation in the fossil record (Purnell et al., 2018). As
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a result, most phylogenetic and evolutionary studies of marsupials do not include pouch
presence as a character or discuss the evolutionary history of this structure in depth.
Although a few phylogenetic analyses have incorporated pouch presence (Horovitz &
Sanchez-Villagra, 2003; Schneider & Gurovich, 2017; Voss & Jansa, 2009), only
Schneider and Gurovich (2017) provide a detailed discussion of pouch evolution. Another
caveat of our study is the simplified categorization of pouch presence and absence, which
does not fully capture the extensive variation in pouch morphology among marsupials.
Pouches vary in depth, teat arrangement and quantity, and orientation (Tyndale-Biscoe;
2005), and Russell (1982) classified them into six distinct types. These range from species
with no permanent pouch but seasonal skin folds (Type 1) to those with fully enclosed
pouches opening either anteriorly or posteriorly (Types 5 and 6). Also, the' pouch is a
feature that undergoes morphological and physiological changes during-the lifetime; its
first appearance may only happen when the female reaches s¢xual'maturity and enters her
first breeding season, so the classification of some taxa as pouchless may be inaccurate
(Woolley, 1974). By focusing only on pouch presence or absence, our study does not
account for this morphological complexity;, which’may influence both the function and
evolutionary dynamics of the pouch”and associated traits. Despite that, and at least for
body mass, correlation analysesfindicated that models accounting for hidden states, which
could capture the effects of further detailing pouch variation, are not preferred over
models using the simpler binary classification adopted here. This suggests that
considering only the presence or absence of the marsupium may be sufficient to describe

how these'structures evolved in concert with body size.

The sunvival of marsupial neonates is remarkable, considering their altricial condition at
birth. These young are born with only a few functional features, such as the forelimbs and

mouthparts, while important systems like lung function, thermoregulation, and immunity
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are still underdeveloped (Tyndale-Biscoe & Renfree, 1987a). The presence of the pouch
plays a crucial role by providing a safe environment that supports continued development
after birth. Our results offer new insights into the evolution of this important trait. We
found that the presence of a pouch is closely related to life-history traits, especially body
mass and litter size. Larger species are more likely to have a pouch, while smaller species
with larger litters often lack one. Also, body mass evolves at different rates depending on
whether the pouch is present or not. The pouch has been gained and lost multiple times
during marsupial evolution, showing that it is a flexible adaptation that changes in
different lineages. These findings highlight the complex role of the pouch in marsupial

biology and its importance for their evolutionary history.
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Fig 1 Relationship of logio body mass, litter size, and pouch presence across the 195
sampled marsupial species. Biplot depicting the mean values (dots), and the range of
variation (bars) across the 100 simulated datasets (A). Silhouettes illustrating extreme
opposite combinations of traits: Cryptonanus,chacoensis (purple) and Osphranter rufus

(yellow) obtained in PhyloPic (ww%#.phylopic.org). Logistic regression curve illustrating

the probability of pouch presenceas a function of logio body mass (B). Logistic regression
curve illustrating the probability of pouch presence as a function of litter size (C). Trait
values and pouch probabilities were averaged across the 100 datasets for plotting B and

C.

Alt.text Fig 1 Plots showing the relationship among body mass, litter size, and pouch
presence in 195 marsupial species. Silhouettes depict species with extreme trait
combinations. Logistic curves illustrate how the probability of pouch presence increases

with body mass and decreases with litter size.
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Alt text Fig 2 Ancestral state reconstructions of pouch presence in marsupials modelled
in correlation with body size under alternative best-fitting models. Pie charts at nodes
indicate probabilities of each ancestral state, while tip colors denote observed states in

extant species.
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Table 1 Phylogenetic signal results for inidividual traits and their
combinations. M statistic and associated p-values are summarized by the
mean and confidence intervals (Cls) across the 100 combinations of tree
and datasets. *Significant at a = 0.05.

Data set M statistic p-value

0.72 (0.71 -

Pouch 0.72) 0.001 (0.001 — 0.001)*
0.74 (0.73 -

Body mass 0.74) 0.001 (0.001 —0.001)*
0.69 (0.68 —

Litter size 0.69) 0.001 (0.001 — 0.001)*
0.95 (0.95 -

Body mass x litter size 0.95) 0.001 (0.001 —0.001)*
0.70(0.70 -

Pouch x body mass 0.71) 0.001 (0.001 —0.001)*
0.73(0.72 -

Pouch x litter size 0.73) 0.001 (0.001 —0.001)*
0.70 (0.69 -

Pouch x body mass x litter size 0.70) 0.001 (0.001 —0.001)*

Table 2 PGLMM parameters summarized by the mean and confidence intervals (Cls). Cl for the mean across the 100 combinations of+ree and
datasets shown in parentheses, and Rubin’s Cl, which account for both within- and among-dataset uncertainty, shown in brackets:BIC =Bayesian

information criterion, BICw = BIC weights.

Slope: body
Model Intercept mass Slope: litter size Slope: interaction BIC BICw
0.48 (0.46 —
0.49) 209.564208.97 = 0.00 (0.00 -
Null [-2.33-3.28] - - - 210.15) 0.00)
1.37(1.35- 1.48(1.46 -
1.38) 1.49) 141.70(141.21 - 0.01 (0.01 -
Body mass [-1.60 — 4.33] [0.27 — 2.68] - - 142.18) 0.02)
0.50 (0.49 - -0.69 (-0.72 —-
0.52) 0.66) 170.05 (168.18 - 0.00 (0.00 -
Litter size [-2.31-3.32] - [-1.64 - 0.26] - 171.92) 0.00)
1.35(1.33- 1.38(1.37- -0.58 (-0.61 —-
Body mass + litter 1.37) 1.40) 0.55) 129.84 (128.98 — 0.70 (0.65 -
size [-1.65 —4.36] [0.16 -2.61] [-1.58 - 0.42] - 130.69) 0.74)
1.45(1.43- 1.56 (1.53 - -0.79 (-0.85 — - -0.38(-0.44 — -
Body mass * litter 1.47) 1.59) 0.74) 0.33) 131.85(130.88 — 0.29 (0.25 -
size [-1.63 — 4.53] [0.16 —2.96] [-2.04 - 0.45] [-1.62 — 0.85] 132.82) 0.33)
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Table 3 Results of model fitting using hOUwie for the joint
evolution of pouch and body mass. The best-fitting models
(BICw 2 0.1) are indicted in bold. BIC - Bayesian information
criterion, BICw - BIC weights

Model BIC BICw
CD_ER_BMV 288.81 0.46
CD_ER_OUV 294.24 0.03
CD_ER_OUM 302.98 <0.01
CD_ER_OUMV 288.74 0.47
CD_ARD_BMV 295.05 0.02
CD_ARD_OUV 298.86 <0.01
CD_ARD_OUM 304.28 <0.01
CD_ARD_OUMV 298.20 <0.01
CID_ER_BM1 296.67 0.01
CID_ER_OU1 301.30 <0.01
CID_ARD_BM1 299.48 <0.01
CID_ARD_OU1 304.73 <0.01
CIDP_ER_BMV 308.14 <0.01
CIDP_ER_OUV 315.61 <0.01
CIDP_ER_OUM 321.79 <0.01
CIDP_ER_OUMV 323.26 <0.01
CIDP_ARD_BMV 317.63 <0.01
CIDP_ARD_OUV 321.93 <001
CIDP_ARD_OUM 314.17 <0.01
CIDP_ARD_OUMV 313.36 <001
HYB_ER_BMV 302.68 <0.01
HYB_ER_OUV 306.97 <0.01
HYB_ER_OUM 331.60 <0.01
HYB_ER_OUMYV 326.51 <0.01
HYB_ARD_BMV 311.80 <0.01
HYB_ARD_OUV 313.06 <0.01
HYB_ARD_OUM 337.50 <0.01
HYB_ARD_OUMV 324.04 <0.01
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Table 4 Best estimate and 95% Cl of the parameters of the best-
fitting hOUwie models (BICw = 0.1) for the joint evolution of pouch
and body mass. 0 - pouch absent, 1 - pouch present.

Parameter/Model CD_ER_OUMV CD_ER_BMV
0.004 (0.002 -
g0,1=q1,0 0.004 (0.002 - 0.011) 0.011)
a 0.001 (0.000 - 0.002) -
0.005 (0.003 -
0% 0.003 (0.002 - 0.009) 0.010)
0.017 (0.012 -
0% 0.019 (0.012 - 0.025) 0.026)
1.993 (0.702 -
0 - 3.087)
6o 1.423(0.286 —2.434) -
47.095 (12.829 —
0; 122.238) -
694
695
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