A carcharodontosaurid tooth from "Boca de Forno" Ravine of the Itapecuru Formation, Parnaíba Basin, Maranhão, Brazil

Tainá Constância de França, Natan Santos Brilhante, Rafael Delcourt, João Lucas da Silva, Christophe Hendrickx, Manuel Alfredo Medeiros, Fabiana Rodrigues Costa

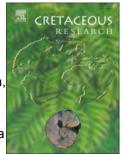
PII: S0195-6671(25)00086-2

DOI: https://doi.org/10.1016/j.cretres.2025.106163

Reference: YCRES 106163

To appear in: Cretaceous Research

Received Date: 8 November 2024


Revised Date: 30 April 2025

Accepted Date: 5 May 2025

Please cite this article as: de França, T.C., Brilhante, N.S., Delcourt, R., Lucas da Silva, J., Hendrickx, C., Medeiros, M.A., Costa, F.R., A carcharodontosaurid tooth from "Boca de Forno" Ravine of the Itapecuru Formation, Parnaíba Basin, Maranhão, Brazil, *Cretaceous Research*, https://doi.org/10.1016/j.cretres.2025.106163.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.



|    | Journal Pre-proof                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1  | A carcharodontosaurid tooth from "Boca de Forno" Ravine of the Itapecuru                                                                |
| 2  | Formation, Parnaíba Basin, Maranhão, Brazil                                                                                             |
| 3  |                                                                                                                                         |
| 4  | Tainá Constância de França <sup>a</sup> *, Natan Santos Brilhante <sup>b,a</sup> , Rafael Delcourt <sup>c</sup> , João Lucas            |
| 5  | da Silva <sup>d</sup> , Christophe Hendrickx <sup>e</sup> , Manuel Alfredo Medeiros <sup>f</sup> , Fabiana Rodrigues Costa <sup>a</sup> |
| 6  |                                                                                                                                         |
| 7  | <sup>a</sup> Laboratório de Paleontologia de Vertebrados e Comportamento Animal, Universidade                                           |
| 8  | Federal do ABC, Alameda da Universidade, s/n, Anchieta, 09606-045 São Bernardo do                                                       |
| 9  | Campo, São Paulo, Brazil.                                                                                                               |
| 10 | <sup>b</sup> Museu Nacional, Universidade Federal do Rio de Janeiro (MN/UFRJ), Rio de Janeiro,                                          |
| 11 | Rio de Janeiro, Brazil;                                                                                                                 |
| 12 | <sup>c</sup> Laboratório de Paleontologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão                                        |
| 13 | Preto, Departamento de Biologia, Universidade de São Paulo, Av. Bandeirantes 3900,                                                      |
| 14 | Ribeirão Preto, São Paulo, Brazil.                                                                                                      |
| 15 | <sup>d</sup> Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, Rio                                              |
| 16 | Grande do Sul, Brazil.                                                                                                                  |
| 17 | <sup>e</sup> Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, San Miguel de                                                      |
| 18 | Tucumán, Tucumán, Argentina.                                                                                                            |
| 19 | <sup>f</sup> Departamento de Biologia, Universidade Federal do Maranhão (UFMA), São Luís,                                               |
| 20 | Maranhão, Brazil.                                                                                                                       |
| 21 |                                                                                                                                         |
| 22 | Correspondence and requests for materials should be addressed to TCF                                                                    |
| 23 | (taina.constancia@gmail.com)                                                                                                            |
| 24 |                                                                                                                                         |
| 25 | ORCID                                                                                                                                   |
| 26 | 0000-0002-5769-968X (TCF)                                                                                                               |
| 27 | 0000-0001-7730-9899 (NSB)                                                                                                               |
|    |                                                                                                                                         |

- 28 0000-0002-1108-4188 (RD)
- 29 0000-0002-4104-8778 (JLS)
- 30 0000-0002-8500-2405 (CH)
- 31 0000-0003-3418-4736 (MAM)
- 32 0000-0003-3596-0143 (FRC)
- 33

### 34 Abstract

Carcharodontosauridae forms a clade of medium- to very large-sized (6-14 m long) 35 allosauroid theropods mostly restricted to the Early and mid Cretaceous with an almost 36 37 global distribution, and characterized by deep and narrow ornamented skulls and 38 strongly compressed ziphodont teeth. In Brazil, the carcharodontosaurid fossil record is limited to shed teeth and isolated postcranial elements from the Aptian-Cenomanian 39 40 deposits of the eastern part of the country. Here we describe and identify a shed tooth from a little-known outcrop of the Early Cretaceous (Aptian-Albian) Itapecuru 41 42 Formation of the Maranhão State, northeastern Brazil. Although some teeth have already been reported from the Aptian-Albian deposits of this unit, this specimen 43 44 represents the first isolated dental material from the Parnaíba Basin that can be 45 confidently assigned to a carcharodontosaurid through cladistic and morphometric 46 techniques, but also based on a systematic study. The results of the herein conducted study suggest that the specimen belongs to a carcharodontosaurine closely related to the 47 48 Patagonian taxa *Giganotosaurus* and *Mapusaurus*, which are younger in age. Although 49 the specimen is closely related to the abovementioned Patagonian taxa, the faunal 50 composition of the Parnaíba Basin seems to be more similar to that of North Africa. Nevertheless, further collecting efforts are needed in these localities to find skeletal 51 52 carcharodontosaurid remains and to broaden the comparative base for the identification

53 of theropod dentition.

- 54 *Keywords*: Lower Cretaceous, shed crown, Carcharodontosauria, Allosauroidea,
- 55 Theropoda, Itapecuru Formation, Parnaíba Basin
- 56
- 57 **1. Introduction**

58 Carcharodontosauridae is a clade of medium- to large-bodied theropod dinosaurs (6-14 59 m long) diagnosed by a long and low skull, fused nasals covered with rugosities, 60 textured rugosities on the lacrimal and postorbital, as well as dorsal vertebrae with tall neural spines (Novas 1997; Holtz et al. 2004; Ortega et al. 2010; Eddy and Clarke 2011; 61 Carrano et al. 2012; Canale et al. 2014, 2022). Their lateral crowns are particularly large 62 63 (>5 cm), elongated, and labio-lingually compressed and typically show pronounced 64 marginal undulations. The denticulated distal and mesial carina of carcharodontosaurids additionally have chisel-like denticles and elongated 65 66 interdenticular sulci (Hendrickx and Mateus 2014; Hendrickx et al. 2015, 2019, 2020b). Carcharodontosaurids had a cosmopolitan distribution during the Aptian–Turonian, with 67 68 various taxa discovered in Africa, Asia, Europe, North and South America (Depéret and Savornin 1925; Stromer 1931; Stovall and Langston 1950; Coria and Salgado 1995; 69 Coria and Currie 2006; Sereno and Brusatte 2008; Brusatte et al. 2010, 2012; Ortega et 70 71 al. 2010; Cau et al. 2013). The Brazilian carcharodontosaurid record is limited to isolated teeth and poorly preserved postcranial bones such as caudal vertebrae 72 (Medeiros 2001; Ribeiro et al. 2003; Medeiros et al. 2014; Carvalho and Santucci 2018; 73 74 Pereira et al. 2020). These fossil remains have been mainly found in Lower Cretaceous 75 deposits of northeastern Brazil, and include several isolated teeth from the Cenomanian 76 Alcântara Formation (Góes and Rossetti 2001; Medeiros 2001; Medeiros et al. 2014) 77 and the Aptian-Albian Itapecuru Formation (Medeiros and Schultz 2002; Ribeiro et al.

| 78  | 2003; Corrêa-Martins 2019), as well as two caudal vertebrae from the Albian-                    |
|-----|-------------------------------------------------------------------------------------------------|
| 79  | Cenomanian Açu Formation, Potiguar Basin (Araripe and Feijo 1994; Pereira et al.                |
| 80  | 2020). Carcharodontosaurid material from southeastern Brazil is extremely scarce and            |
| 81  | restricted to a single isolated tooth from the Aptian Quiricó Formation of the                  |
| 82  | Sanfranciscana Basin, Minas Gerais (Carvalho and Santucci 2018). A fragmentary                  |
| 83  | maxilla with an <i>in situ</i> tooth as well as some isolated crowns from Maastrichtian beds of |
| 84  | the Bauru Basin were also referred to Carcharodontosauridae by Azevedo et al. (2013)            |
| 85  | and Candeiro et al. (2004, 2006, 2012), respectively. Nevertheless, Delcourt and Grillo         |
| 86  | (2018) and Delcourt et al. (2020a, 2024) re-evaluated the phylogenetic affinities of these      |
| 87  | specimens and concluded that they rather belonged to Abelisauridae (Carrano and                 |
| 88  | Sampson 2008; Delcourt 2018).                                                                   |
| 89  | This paper aims to describe and identify an isolated shed tooth (CPHNAMA                        |
| 90  | VT-1502) from a little-known outcrop of the Aptian–Albian Itapecuru Formation of the            |
| 91  | Parnaíba Basin, Maranhão State, northern Brazil (Pedrão et al. 1993a, 1993b). This              |
| 92  | specimen represents the first carcharodontosaurid record from this region to be                 |
| 93  | identified using cladistic and morphometric techniques and expands our knowledge of             |
| 94  | the theropod record from the Early Cretaceous of Southern America.                              |
| 95  |                                                                                                 |
| 96  | Institutional abbreviations. CPHNAMA, Centro de Pesquisa de História Natural e                  |
| 97  | Arqueologia do Maranhão, São Luís, Maranhão, Brazil; MN, Museu Nacional, Rio de                 |
| 98  | Janeiro, Brazil; UFABC, Universidade Federal do ABC, São Bernardo do Campo, São                 |
| 99  | Paulo, Brazil; UFMA, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil;              |
| 100 | UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; UNICAMP,                  |
| 101 | Universidade Estadual de Campinas, São Paulo, Brazil.                                           |
| 102 |                                                                                                 |

103 Morphometric abbreviations. AL, apical length; CBL, crown base length; CBR, crown

104 base ratio; CBW, crown base width; CH, crown height; CHR, crown height ratio; DC,

- 105 distocentral denticle density; MC, mesiocentral denticle density; MCL, mid-crown
- 106 length; MCR, mid-crown ratio; MCW, mid-crown width.
- 107
- 108 1.1. Geographical, stratigraphic and paleoenvironmental settings
- 109 CPHNAMA VT-1502 was collected in December 2016 during an expedition led by the
- 110 Centro de Pesquisa de História Natural e Arqueologia do Maranhão (CPHNAMA), in
- 111 partnership with the Universidade Federal do Maranhão (UFMA). The specimen comes
- 112 from an outcrop known as "Boca de Forno Ravine" (Fig. 1) and located along the
- 113 Itapecuru River valley, nearby Conceição Village in Coroatá Municipality, Maranhão
- 114 State, Brazil (coordinates 3°55'39.56''S, 44°09'38.41''W).
- 115 Campbell (1949) used a sandy succession under a bridge spanning the Itapecuru 116 River from the municipality of Itapecuru-Mirim, northern Parnaíba Basin to define the 117 Itapecuru Formation. The composite section is formed by predominantly red and light 118 gray fine-grained sandstones interlayered with mudstone, siltstone and shales (Campbell 119 1949; Lima and Leite 1978). This continental succession extends along the lower course 120 of the Itapecuru River. It is prominently represented near the coast of Maranhão State 121 and extends from the southern part of the municipality of Coroatá to the city of Rosário. The Itapecuru Formation was dated as upper Aptian to Albian (approximately 125.0– 122 123 100.5 Ma; Pedrão et al. 1993a, 1993b; Vicalvi and Carvalho 2002) and overlies the bituminous shales of the Aptian Codó Formation (Caputo 1984). 124 The vertebrate paleofauna of the Itapecuru Formation is diverse and currently 125 includes dinosaurs, crocodylomorphs, testudines and fishes (Carvalho 1994; Kischlat 126
- and Carvalho 2000; Batista 2009; Carvalho 2002; Dutra and Malabarba 2001; Medeiros

| 128 | and Schultz 2001; Medeiros et al. 2007, 2014). Theropods are mainly represented by      |
|-----|-----------------------------------------------------------------------------------------|
| 129 | isolated theropod teeth referred to carcharodontosaurids and spinosaurids (Medeiros and |
| 130 | Schultz 2001; Medeiros et al. 2007, 2014). Two sauropod clades i.e., Titanosauria and   |
| 131 | Diplodocoidea, are known from this formation. Titanosaurian remains are represented     |
| 132 | by a right humerus and fragmentary dorsal and caudal vertebrae (Castro et al. 2007)     |
| 133 | whereas the diplodocoid record consists of the rebbachisaurid Amazonsaurus              |
| 134 | maranhensis, which preserves a few postcranial elements (e.g., dorsal neural spines,    |
| 135 | posterior caudal vertebra, ilium, pubis; Carvalho et al., 2003), as well as fragmentary |
| 136 | neural arch referred to Rebbachisauridae (Castro et al. 2007).                          |
| 137 | Crocodyliformes are restricted to the notosuchian Candidodon itapecuruense              |
| 138 | represented by two mandibular rami (Carvalho 1994). Postcranial elements referred to    |
| 139 | the same species, such as presacral vertebrae, humerus, femur, and osteoderms, were     |
| 140 | also found (Nobre 2004). Testudines from the Itapecuru Formation include Araripemys     |
| 141 | barretoi, wich was originally reported from the Crato and Romualdo formations of the    |
| 142 | Santana Group, Araripe Basin (Kischlat and Carvalho 2000; Batista 2009).                |
| 143 | Fish remains are common and sometimes abundant in the Itapecuru Formation.              |
| 144 | This is particularly the case of the mawsoniid Mawsonia gigas, a coelacanth described   |
| 145 | from large and well-ornamented angular and parietal bones (Carvalho 2002). Dipnoi       |
| 146 | fishes such as Ceratodus africanus and Asiatoceratodus tiguidiensis (Pereira et al.     |
| 147 | 2013), mainly represented by dental plates in these deposits (Dutra and Malabarba       |
| 148 | 2001). The invertebrate records from Itapecuru Formation finally include Conchostraca,  |
| 149 | Ostracoda, and Mollusca such as bivalves and gastropods (Ferreira et al. 1991; Carvalho |
| 150 | 1994; Dutra and Malabarba 2001).                                                        |
| 151 |                                                                                         |
|     |                                                                                         |

152 **2. Material and Methods** 

153 2.1.Comparative anatomy and followed terminology

154 Specimen CPHANAMA VT-1502 was photographed with a Canon EOS 77D DSLR

155 Camera coupled with an EF-S 60 mm f/2.8 Macro USM Lens in mesial, labial, distal,

156 lingual, apical, and basal views. This shed crown was compared to the teeth of 118 non-

157 avian theropods deposited in the collections of 35 institutions from 13 countries

158 (Argentina, Belgium, Canada, China, France, Germany, Italy, Portugal, Qatar,

159 Switzerland, South Africa, the United Kingdom, and the USA; see the supplementary

160 material of Hendrickx et al., 2020a).

161 The shed tooth crown was described and illustrated following the anatomical

162 terminology and tooth orientation proposed by Hendrickx et al. (2015). We also

163 followed the descriptive order to the isolated theropod teeth of this study, emphasizing

164 condition, crown, denticles and ornamentations.

165

## 166 2.2. Morphometric analysis

167 Specimen CHPHNAMA VT-1502 was measured using an analog caliper and double-

168 checked on ImageJ 1.53 software (Schneider et al. 2012); measurements followed the

variable proposed by Smith et al. (2005) and were obtained as follows: AL, CBL, CBR,

170 CBW, CH, CHR, DC, MC, MCL, MCR, and MCW (Table 1; to access a complete

171 description of measurements, see Hendrickx et al. 2015). These were added to the

172 dataset of Delcourt et al. (2020a), which is a slightly modified version of that of

173 Hendrickx et al. (2020a). The dataset was restricted to South American Cretaceous taxa

174 (i.e., Abelisauridae, Carcharodontosauridae, early-branching Ceratosauria,

175 Compsognathidae, Dromaeosauridae, Neovenatoridae, Noasauridae, Pantyrannosauria,

and Spinosauridae) to reduce the potential noise in the analysis.

177 The modified dataset resulted in a database containing 683 tooth crowns. To

| 178 | better reflect a normally distributed multivariate dataset, all data were log-transformed |
|-----|-------------------------------------------------------------------------------------------|
| 179 | according to Smith et al. (2005) and Hendrickx et al. (2020a). The statistical analysis   |
| 180 | was performed using Past v4.02 software (Hammer et al. 2001), followed by                 |
| 181 | discriminant analysis (LDA) conducted to create an ordinated morphospace in which         |
| 182 | the analyzed clades were maximally separated. Specimen CPHNAMA VT-1502 was                |
| 183 | labeled as "mysterious species" allowing the LDA analysis to identify which taxon was     |
| 184 | more similar to it according to the given variables. The LDA was performed solely at      |
| 185 | clade-level.                                                                              |
| 186 |                                                                                           |
| 187 | 2.3.Cladistic analysis                                                                    |
| 188 | Specimen CHPHNAMA VT-1502 was additionally included in the dentition-based                |
| 189 | datamatrix of Hendrickx et al. (2020a), which comprises 148 dental characters scored in   |
| 190 | 107 non-avian theropod taxa. The specimen was scored as a lateral tooth (char. 69 to      |
| 191 | 119). The cladistic analysis was performed using TNT software version 1.5 (Goloboff       |
| 192 | and Catalano 2016) following the search parameters used by Hendrickx et al. (2020a -      |
| 193 | TNT command used is "xmult = hits 100 rss fuse 5 ratchet 20", after we run the "bb"       |
| 194 | command). These commands represent a combination of Wagner trees, TBR, sectorial          |
| 195 | searches, Ratchet with 20 substitutions, and Tree Fusion with five rounds, whereupon      |
| 196 | 100 hits of the same minimum tree length were achieved.                                   |
| 197 |                                                                                           |
| 198 | 3. Systematic Paleontology                                                                |
| 199 | Dinosauria Owen, 1842                                                                     |
| 200 | Saurischia Seeley, 1888                                                                   |
| 201 | Theropoda Marsh, 1881                                                                     |
| 202 | Allosauroidea Marsh, 1878                                                                 |

203 Carcharodontosauridae Stromer, 1931

- 204 Carcharodontosaurinae Brusatte & Sereno, 2008
- Gen. and sp. indet.

206 *Material*. One isolated tooth (CPHNAMA VT-1502; Fig. 2, Table 1)

- 207
- 208

## 4. Descriptive anatomy

*Condition.* Specimen CPHANAMA VT-1502 is a shed tooth crown showing signs of
wear, breakage, and deformation (Fig. 2). The mesial carina is worn out at mid-crown
(Fig. 2A) and even though the distal margin of the crown exhibits breaks, most of the
distal carina is well preserved (Fig. 2C). The enamel layer is almost intact on both
lingual and labial surfaces. The cervical line is visible along the mesial and labial
surfaces of the crown but only partially preserved distally.

215 Crown. Specimen CPHNAMA VT-1502 is a typical blade-shape ziphodont tooth crown 216 with a distal curvature and denticulated carinae. The crown is strongly labiolingually 217 compressed (CBR = 0.38), with a moderate baso-apical elongation (CHR = 1.85) and 218 slightly distally recurved so that the apex does not extend beyond the basodistalmost point of the crown (Fig. 2). The extension of the enamel is symmetrical on both mesial 219 220 and distal surfaces. In lateral view, the mesial margin is strongly convex. Controversely, the distal margin is sigmoid, with the basal and apical halves being slightly concave and 221 convex, respectively (Fig. 2A, C). The labial side of the crown exhibits a centrally 222 223 positioned and slightly flattened surface along the basal one-third of the crown. The cross-section of the base crown is lenticular and subsymmetrical (Fig. 2E, F). Both 224 225 mesial and distal carinae are denticulated all along their length and the basalmost denticles extend well-beneath the cervix (Fig. 2A, C). No concave surface is present 226 adjacent to the carinae. The mesial carina is straight and slightly lingually displaced in 227

228 medial view (Fig. 2A). Conversely, the distal carina is slightly bowed, almost sigmoid, 229 and centrally positioned on the distal surface of the crown in distal view (Fig. 2C). Denticles. Both carinae bear denticles with parabolic and symmetrically to 230 231 asymmetrically convex external margins. Mesial and distal denticles extend apically 232 close to the apex and basally below the cervical line (Fig. 2A, B, C, D). No biconvex denticles have been observed on the carinae. Apical denticles on the mesial carina 233 234 project perpendicular from the mesial margin of the crown, whereas distal denticles 235 from the distal carina are apically inclined at mid-crown (Fig. 2B, D). Mesial denticles at two-thirds of the crown and more apically (MC-MA) have a subquadrangular shape 236 237 (i.e., they are as long mediodistally as apicobasally). Distoapical denticles (DA) on the distal carina have the same subquadrangular shape. Conversely, both mid-crown distal 238 239 denticles (DC) and distobasal denticle (DB) have a horizontal subrectangular shape (i.e., 240 they are longer mediodistally than apicobasally). Mesiobasal denticles (MB) on the mesial carina have the same subrectangular shape. Denticles have a similar morphology 241 242 along the carinae, but their size increases apically (Fig. 2A, B, C, D). However, the 243 distal denticles slightly decrease in size close to the apex. Mesial and distal denticles share the same width at mid-crown (i.e., DSDI~1). 244

245 The interdenticular spaces (idsp) between mid-crown distal denticles are broad and occupy more than one-third of the denticle width. Obliquely oriented interdenticular 246 sulci (= *blood grooves sensu* Currie et al. 1990) extending basally can be observed 247 248 between mesial and distal denticles (Fig. 2B, C). The sulci between mesial denticles are 249 short, poorly developed, and restricted to the crown apex. Conversely, those between distal denticles are long, well-developed (i.e., longer than the proximodistal height of 250 251 the denticles) and visible on the basal and central portions of the distal carina. Ornamentations and other attributes. The crown apex is well-preserved and slightly 252

| 253 | rounded, with a subtle sign of enamel wear (Fig. 2B, C, D). A few transverse            |
|-----|-----------------------------------------------------------------------------------------|
| 254 | undulations are present on both labial and lingual surfaces where they are tenuous and  |
| 255 | barely visible under light. No other enamel ornamentation are present on the tooth. The |
| 256 | enamel surface texture is braided, with a baso-apically oriented pattern that is not    |
| 257 | clearly visible with light.                                                             |
| 258 |                                                                                         |
| 259 | 5. Results                                                                              |
| 260 | 5.1.Discriminant analysis                                                               |
| 261 | Specimen CPHNAMA VT-1502 is identified as a lateral crown based on its particularly     |
| 262 | low crown base ratio (CBR; sensu Smith et al. 2005) as mesial teeth are always more     |
| 263 | labiolingually thicker, with typically a CBR higher than 0.6 (Hendrickx et al. 2015).   |
| 264 | This specimen was retrieved as a non-abelisauroid ceratosaurian by the LDA analysis.    |
| 265 | The specimen is, however, plotted in the intersection of the convex hulls of            |
| 266 | Abelisauridae and Carcharodontosauridae (Fig. 3). The length measurements (MCW,         |
| 267 | MCL, AL, CH, CBL, CBW) were the main variables that distinguished the clades along      |
| 268 | Axis 1, whereas denticle densities (DC, MC) separated groups along Axis 2. About        |
| 269 | 74.52% of the 683 crowns included in this analysis were correctly identified, compared  |
| 270 | to 73.94% in the Jackknife reclassification. The rate of classification was variable    |
| 271 | between the groups for non-jackknife classification: 100% for non-abelisauroid          |
| 272 | ceratosaurians, early-branching coelurosaurians and compsognathids; 86.84% for          |
| 273 | neovenatorids; 89.65% for spinosaurids; 85.71% for pantyrannosaurians; 77.08% for       |
| 274 | abelisaurids; 84.94% for carcharodontosaurids; 68.03% for dromaeosaurids; and 41.6%     |
| 275 | for noasaurids.                                                                         |
|     |                                                                                         |

276

277 5.2.Cladistic analysis

| 278 | The cladistic analysis yielded a single most parsimonious tree (MPT) (dentition and         |
|-----|---------------------------------------------------------------------------------------------|
| 279 | crown-based characters) in which CPHNAMA VT-1502 was recovered as a                         |
| 280 | carcharodontosaurine allosauroid (consistency index = $0.195$ ; retention index = $0.435$ ; |
| 281 | length = $1,362$ ) and the sister taxon of the clade gathering the South American forms     |
| 282 | Mapusaurus and Giganotosaurus (Fig. 4). The dental synapomorphies (Fig. 5)                  |
| 283 | constraining the South American carcharodontosaurine clade are: absence of biconvex         |
| 284 | apical denticles (i.e., biconvex external margin of denticle) on the mesial carina in       |
| 285 | lateral teeth (char. 98:0); apical denticles oriented perpendicularly from the mesial       |
| 286 | carina in lateral teeth (char. 99:0); presence of interdenticular sulci between mid-crown   |
| 287 | denticles on the distal carina of lateral teeth (char. 109:2).                              |
| 288 |                                                                                             |
| 289 | 6. Discussion                                                                               |
| 290 | 6.1.Systematic affinities of CPHNAMA VT-1502                                                |
| 291 | Despite the abundance of theropod shed teeth in many fossil sites, the identification of    |
| 292 | isolated teeth remains challenging, leading to the misidentification of many specimens      |
| 293 | (e.g., Candeiro 2004, 2006, 2012; reassessed by Delcourt et al. 2020a, 2024).               |
| 294 | Discriminant and cladistic analyses have been useful methods to explore the                 |
| 295 | phylogenetic identification of isolated teeth (Hendrickx et al. 2019; Berrocal-Casero et    |
| 296 | al. 2023). Although the discriminant analysis classified CPHNAMA VT-1502 as a non-          |
| 297 | abelisauroid ceratosaurian, this specimen is recovered in the convex hull of both           |
| 298 | Abelisauridae and Carcharodontosauridae theropods, whereas the results of the cladistic     |
| 299 | analysis retrieved this specimen within Carcharodontosaurinae. Abelisauridae are            |
| 300 | particularly common in the Cretaceous of Brazil, with three species described:              |
| 301 | Pycnonemosaurus, Thanos, and Spectrovenator (Kellner and Campos 2002; Delcourt              |
| 302 | 2017; Delcourt and Iori 2018; Zaher et al. 2020). Although abelisaurid and                  |

| 303 | carcharodontosaurid lateral teeth share many dental features, these include: a mesial        |
|-----|----------------------------------------------------------------------------------------------|
| 304 | carina extending to the cervix, poorly recurved crowns with a straight to slightly           |
| 305 | concave distal profile, well-developed interdenticular sulci between distal denticles, and   |
| 306 | an asymmetrically convex external margin of the denticles (Hendrickx et al. 2019).           |
| 307 | Specimen CPHNAMA VT-1502 does not exhibit several dental characters typically                |
| 308 | seen in abelisaurid lateral teeth. These characters include the irregular enamel surface     |
| 309 | texture, hooked distal denticles, and symmetrically convex labial and lingual profiles of    |
| 310 | the crown. Instead, the enamel-texture of CPHNAMA VT-1502 is braided, the distal             |
| 311 | denticles are strongly mesio-distally elongated and separated by wide interdenticular        |
| 312 | spaces, the distal carina is slightly sigmoid in distal view, and the apicodistal profile of |
| 313 | the crown is weakly convex in lateral view. This combination of dental features is           |
| 314 | typical of carcharodontosaurid theropods (Hendrickx et al. 2019). Results of the             |
| 315 | cladistic analysis further support the carcharodontosaurine affinities of CPHNAMA VT-        |
| 316 | 1502, which is recovered in the same clade as the Patagonian taxa Mapusaurus and             |
| 317 | Carcharodontosaurus. Comparative anatomy combined with the results of the                    |
| 318 | morphometric and cladistic analyses all support an assignment of CPHNAMA VT-1502             |
| 319 | to Carcharodontosaurinae so that this specimen is confidently identified as belonging to     |
| 320 | this clade. This study is, therefore, the first to confirm the presence of                   |
| 321 | carcharodontosaurine carcharodontosaurids in the Parnaíba Basin of Brazil using              |
| 322 | computational techniques.                                                                    |
| 323 |                                                                                              |
| 324 | 6.2. Remarks on the Paleogeographic history of Carcharodontosauridae                         |
| 325 | Carcharodontosauridae is traditionally defined as all taxa that share a more recent          |
| 326 | common ancestor with Carcharodontosaurus saharicus than with Allosaurus fragilis or          |
| 327 | Sinraptor dongi (Weishampel et al. 2004, Novas et al. 2013). Coined by Stromer               |

| 328 | (1931), the clade Carcharodontosauridae has a wide paleogeographic distribution during  |
|-----|-----------------------------------------------------------------------------------------|
| 329 | the Cretaceous (Candeiro et al 2018; Meso et al. 2021) and represent an important       |
| 330 | radiation of allosauroid theropods, spanning from the Late Jurassic to the mid-         |
| 331 | Cretaceous (Brusatte and Sereno 2008; Rauhut 2011; Malafaia et al. 2020; Canale et al.  |
| 332 | 2022). Carcharodontosaurids were present in Gondwana (Africa and South America -        |
| 333 | e.g., Carcharodontosaurus, Giganotosaurus, Meraxes) and in Laurasia (Asia, Europe       |
| 334 | and North America - e.g., Acrocanthosaurus, Concavenator, Kelmayisaurus,                |
| 335 | Shaochilong) (Stovall and Langston 1950; Ortega et al. 2010; Coria et al 2020; Canale   |
| 336 | et al. 2022).                                                                           |
| 337 | Carcharodontosaurid taxa appear to be particularly common from the Barremian (127-      |
| 338 | 121 Ma) to the Turonian (94-90 Ma) (Medeiros et al. 2014; Carvalho and Santucci         |
| 339 | 2018; Pereira et al. 2020; Meso et al 2021). Carcharodontosaurids from Brazil are       |
| 340 | mostly represented by isolated teeth (Medeiros and Schultz 2001, 2002; Medeiros et al   |
| 341 | 2014) and other fragmentary postcranial elements, such as two caudal vertebrae (Pereira |
| 342 | et al. 2020). The Brazilian carcharodontosaurid remains were assigned to                |
| 343 | Carcharodontosauridae indet. and no Brazilian species has been proposed so far.         |
| 344 | Despite the scarce record of carcharodontosaurid remains in Brazil, the presence        |
| 345 | of isolated crowns suggests that the faunal composition in the Quiricó, Itapecuru, and  |
| 346 | Alcântara formations appears to be as complex as seen in North Africa (Ibrahim et al.   |
| 347 | 2020), Patagonia (Novas et al. 2013), and the Iberian Peninsula (Alonso et al. 2018;    |
| 348 | Isasmendi et al. 2020), where these theropods shared their environments with other      |
| 349 | large-bodied predatory dinosaurs. Three reasons could explain the absence of non-       |
| 350 | dental remains in Brazil: 1) tooth replacement rates and higher dentary resistance to   |
| 351 | weathering, which may explain that these are almost the only remains that have been     |
| 352 | recovered; 2) the preservation of skeletal remains is biased by climatic conditions, as |

353 seen in the Bauru Basin, Upper Cretaceous of Brazil (Delcourt et al. 2024); and 3) 354 habitat preferences: abelisaurids and carcharodontosaurids occupied more inland 355 habitats while spinosaurids lived in more coastal environments than inland territories (Sales et al. 2016). In any case, more collecting effort must be undertaken in these 356 357 localities to find skeletal carcharodontosaurid remains. 358 359 7. Conclusion Results of the cladistic and morphometric analyses identified CPHNAMA VT-1502 as a 360 361 lateral shed crown of a carcharodontosaurine carcharodontosaurid. This assignment is 362 consistent with the paleogeographic and stratigraphic distribution of this clade in South America during the Cretaceous. This study is the first to confirm the presence of 363 364 carcharodontosaurids in the Parnaíba and São Luís basins using computational 365 techniques as the sole use of comparative anatomy can often lead to misidentifications.

366

377

### Acknowledgments 367

368 We thank Agostinha Araújo Pereira, Rafael Lindoso and the CPHNAMA team for the 369 collection and preparation of the material. Special thanks go to Isaías Pereira Santana 370 and his family for their help during fieldwork. TCF thanks Eduardo Koerich Nery and Rodrigo Vargas Pêgas (UFABC) for their helpful suggestions. Erik Isasmendi and an 371 anonymous reviewer are thanked for their thorough reviews which significantly 372 improved the quality of this manuscript. We thank the Willi Hennig Society for 373 374 providing free access to TNT software. TCF thanks Coordenação de Aperfeiçoamento 375 de Pessoal de Nível Superior (CAPES) for grant # 88887.645497/2021-00. RD thanks 376 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for grant #2021/12231-3. CH is supported by the Consejo Nacional de Investigaciones

| 378        | Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y    |
|------------|------------------------------------------------------------------------------------|
| 379        | Tecnológica, Argentina (Beca Post-doctoral CONICET Legajo 181417). FRC thanks      |
| 380        | FAPESP for grant #2022/03099-7 and Conselho Nacional de Desenvolvimento            |
| 381        | Científico e Tecnológico (CNPq) for grants #404352/2023-5 and #406902/2022-4,      |
| 382        | respectively.                                                                      |
| 383        |                                                                                    |
| 384        | Declaration of interest statement                                                  |
| 385<br>386 | The authors declare no conflict of interests.                                      |
| 387        |                                                                                    |
| 388        | Reference                                                                          |
| 389        | Alonso A, Gasca JM, Navarro-Lorbés P, Rubio C, Canudo JI. 2018. A new contribution |
| 390        | to our knowledge of the large-bodied theropods from the Barremian of the Iberian   |
| 391        | Peninsula: the "Barranco del Hocino" site (Spain). Journal of Iberian Geology, 44: |
| 392        | 7-23.                                                                              |
| 393        | Araripe PT, Feijó FJ. 1994. Bacia Potiguar. Bol Geocien Petrobras 8:27e141.        |
| 394        | Azevedo RPF, Simbras FM, Furtado MR, Candeiro CRA, Bergqvist LP. 2013. First       |
| 395        | Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the     |
| 396        | Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State,            |
| 397        | southeastern Brazil. Cretac Res, 40: 131–142.                                      |
| 398        | Batista DL. 2009. Quelônios da Formação Itapecuru (Cretáceo Inferior), Bacia do    |
| 399        | Parnaíba [Chelonian of the Itapecuru Formation (Lower Cretaceous), Parnaíba        |
| 400        | Basin] [master's thesis]. Rio de Janeiro (RJ): Universidade Federal do Rio de      |
| 401        | Janeiro.                                                                           |

|     | Journal Pre-proof                                                                 |
|-----|-----------------------------------------------------------------------------------|
| 402 | Berrocal-Casero M, Alcalde-Fuentes MR, Audije-Gil J, Sevilla, P. 2023. Theropod   |
| 403 | teeth from the upper Barremian (Lower Cretaceous) of Vadillos-1, Spain. Cretac    |
| 404 | Res, 142, 105392.                                                                 |
| 405 | Brusatte SL, Benson RB, Xu X. 2012. A reassessment of Kelmayisaurus petrolicus, a |
| 406 | large theropod dinosaur from the Early Cretaceous of China. Acta Palaeontologica  |
| 407 | Polonica, 57(1), 65-72.                                                           |
| 408 | Brusatte SL, Chure DJ, Benson RB, Xu X. 2010. The osteology of Shaochilong        |
| 409 | maortuensis, a carcharodontosaurid (Dinosauria: Theropoda) from the Late          |
| 410 | Cretaceous of Asia. Zootaxa, (2334), 1-46.                                        |
| 411 | Campbell DF. 1949. Revised report on the reconnaissance geology of the Maranhão   |
| 412 | Basin. CNP/DEPEX/SEDOC [Internal Report], Rio de Janeiro, 103-00093, p.117.       |
| 413 | Canale JI, Apesteguía S, Gallina PA, Mitchell J, Smith ND, Cullen TM, Shinya A,   |
| 414 | Haluza A, Gianechini FA, Makovicky PJ. 2022. New giant carnivorous dinosaur       |
| 415 | reveals convergent evolutionary trends in theropod arm reduction. Current         |
| 416 | Biology, 32(14): 3195-3202.                                                       |
| 417 | Candeiro CRA, Abranches CT, Abrantes EA, Avilla LS, Martins VC, Moreira AL,       |
| 418 | Torres SR, Bergqvist LP. 2004. Dinosaurs remains from western São Paulo state,    |
| 419 | Brazil (Bauru Basin, Adamantina Formation, Upper Cretaceous). J South Am          |
| 420 | Earth Sci, 18(1): 1–10.                                                           |
| 421 | Candeiro CRA, Brusatte SL, Vidal L, Pereira PVLGDC. 2018. Paleobiogeographic      |
| 422 | evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda)       |
| 423 | during the middle Cretaceous of North Africa. Pap Avulsos Zool, 58: e20185829.    |
| 424 | Candeiro CRA, Currie PJ, Bergqvist LP. 2012. Theropod teeth from the Marília      |

|     | Journal Pre-proof                                                                  |
|-----|------------------------------------------------------------------------------------|
| 425 | Formation (late Maastrichtian) at the paleontological site of Peirópolis in Minas  |
| 426 | Gerais State, Brazil. Rev Bras Geocienc, 42: 323–330.                              |
| 427 | Candeiro CRA, Martinelli AG, Avilla LS, Rich TH. 2006. Tetrapods from the Upper    |
| 428 | Cretaceous (Turonian-Maastrichtian) Bauru Group of Brazil: a reappraisal. Cretac   |
| 429 | Res, 27(6): 923–946.                                                               |
| 430 | Caputo MV. Stratigraphy, tectonics, paleontology and paleogeography of northern    |
| 431 | basins of Brazil [dissertation]. Santa Barbara (CA): University of California.     |
| 432 | Carrano MT, Benson RBJ, Sampson SD. 2012. The phylogeny of Tetanurae               |
| 433 | (Dinosauria: Theropoda). J Syst Palaeontol, 10(2):211–300.                         |
| 434 | Carrano MT, Sampson SD. 2008. The phylogeny of ceratosauria (Dinosauria:           |
| 435 | Theropoda). J J Syst Palaeontol, 6(2):183-236.                                     |
| 436 | Carvalho IS. 1994. Candidodon: um crocodilo com heterodontia (Notosuchia, Cretáceo |
| 437 | Inferior - Brasil) [Candidodon: a crocodile with heterodontia (Notosuchia, Lower   |
| 438 | Cretaceous - Brazil)]. An Acad Bras Cienc. 66(3):331-346.                          |
| 439 | Carvalho IS, Campos DDA. 1988. Um mamífero triconodonte do Cretáceo Inferior do    |
| 440 | Maranhão, Brasil. An Acad Bras Cienc. 60(4):437-446.                               |
| 441 | Carvalho IS, Avilla LS, Salgado L. 2003. Amazonsaurus maranhensis gen. et sp. nov. |
| 442 | (Sauropoda, Diplodocoidea) from the Lower Cretaceous (Aptian-Albian) of            |
| 443 | Brazil. Cretac Res. 24(6): 697-713.                                                |
| 444 | Carvalho JC, Santucci RM. 2018. New dinosaur remains from the Quiricó Formation,   |
| 445 | Sanfranciscana Basin (Lower Cretaceous), Southwestern Brazil. Cretac Res, 85:      |
| 446 | 20–27.                                                                             |
|     |                                                                                    |

|     | Journal Pre-proof                                                                    |
|-----|--------------------------------------------------------------------------------------|
| 447 | Carvalho MSS. 2002. O gênero Mawsonia (Sarcopterygii, Actinistia) no Cretáceo das    |
| 448 | bacias Sanfranciscana, Tucano, Araripe, Parnaíba e São Luís [The genus               |
| 449 | Mawsonia (Sarcopterygii, Actinistia) in the Cretaceous of the Sanfranciscana,        |
| 450 | Tucano, Araripe, Parnaíba and São Luís basins] [master's thesis]. Rio de Janeiro     |
| 451 | (RJ): Universidade Federal do Rio de Janeiro.                                        |
| 452 | Castro DF, Bertini RJ, Santucci RM, Medeiros, MA. 2007. Sauropods of the Itapecuru   |
| 453 | Group (Lower/Middle albian), São Luís-Grajaú Basin, Maranhão State, Brazil.          |
| 454 | Rev Bras Paleontol. 10(3): 195-200.                                                  |
| 455 | Cau A, Dalla Vecchia FM, Fabbri M. 2013. A thick-skulled theropod (Dinosauria,       |
| 456 | Saurischia) from the Upper Cretaceous of Morocco with implications for               |
| 457 | carcharodontosaurid cranial evolution. Cretaceous Research, 40, 251-260.             |
| 458 | Coria RA, Currie PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from    |
| 459 | the Upper Cretaceous of Argentina. Geodiversitas, 28(1), 71-118.                     |
| 460 | Coria RA, Currie PJ, Ortega F, Baiano MA. 2020. An Early Cretaceous, medium-sized    |
| 461 | carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco            |
| 462 | Formation (Upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac        |
| 463 | Res. 111: 104319.                                                                    |
| 464 | Coria RA, Salgado L. 1995. A new giant carnivorous dinosaur from the Cretaceous of   |
| 465 | Patagonia. Nature, 377(6546), 224-226.                                               |
| 466 | Corrêa-Martins FJ. 2019. The Neostratotype of Itapecuru Formation (Lower-Middle      |
| 467 | Albian) and Its Impact for Mesozoic Stratigraphy of Parnaíba Basin. An Acad          |
| 468 | Bras Cienc, 91.                                                                      |
| 469 | Currie PJ, Rigby JKJ, Sloan RE. 1990. Theropod teeth from the Judith River Formation |

|     | Journal Pre-proof                                                                    |
|-----|--------------------------------------------------------------------------------------|
| 470 | of southern Alberta, Canada; pp. 107–125 in K Carpenter, and PJ Currie (eds.),       |
| 471 | Dinosaur Systematics: Approaches and Perspectives. Cambridge University Press,       |
| 472 | New York.                                                                            |
| 473 | Delcourt R. 2017. Revised morphology of Pycnonemosaurus nevesi Kellner & Campos,     |
| 474 | 2002 (Theropoda: Abelisauridae) and its phylogenetic relationships. Zootaxa,         |
| 475 | 4276: 1-45.                                                                          |
| 476 | Delcourt R. 2018. Ceratosaur palaeobiology: new insights on evolution and ecology of |
| 477 | the southern rulers. Scientific reports, 8(1):1-12.                                  |
| 478 | Delcourt R, Brilhante NS, Grillo ON, Ghilardi AM, Augusta BG, Ricardi-Branco, F.     |
| 479 | 2020a. Carcharodontosauridae theropod tooth crowns from the Upper cretaceous         |
| 480 | (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications    |
| 481 | to palaeobiogeography of the group. Palaeogeogr Palaeoclimatol Palaeoecol, 556:      |
| 482 | 109870.                                                                              |
| 483 | Delcourt R, Brilhante NS, Ricardi-Branco F. 2020b. Considerações sobre Abelisauridae |
| 484 | (Dinosauria: Theropoda) e o registro brasileiro [Considerations on Abelisauridae     |
| 485 | (Dinosauria: Theropoda) and the Brazilian registry]. Terrae didática, 16: 1-13,      |
| 486 | e020017. Brazilian Portuguese.                                                       |
| 487 | Delcourt R, Brilhante NS, Pires-Domingues RA, Hendrickx C, Grillo ON, Augusta BG,    |
| 488 | Maciel BS, Ghilardi AM, Ricardi-Branco F. 2024. Biogeography of theropod             |
| 489 | dinosaurs during the Late Cretaceous: evidence from central South America.           |
| 490 | Zoological Journal of the Linnean Society, zlad184.                                  |
| 491 | Delcourt R, Grillo ON. 2018. Reassessment of a fragmentary maxilla attributed to     |
| 492 | Carcharodontosauridae from Presidente Prudente Formation, Brazil. Cretac Res,        |

|     | Journal Pre-proof                                                                    |
|-----|--------------------------------------------------------------------------------------|
| 493 | 84: 515–524.                                                                         |
| 494 | Delcourt R, Iori FV. 2018. A new Abelisauridae (Dinosauria: Theropoda) from São José |
| 495 | do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru         |
| 496 | Group fauna. Hist Biol, 1-8.                                                         |
| 497 | Depéret C and Savornin J. 1925. Sur la découverte d'une faune de vertébrés albiens à |
| 498 | Timimoun (Sahara occidental). Gauthier-Villars.                                      |
| 499 | Dutra MFA, Malabarba MCS. 2001. Peixes do albiano-cenomaniano do grupo itapecuru     |
| 500 | no Estado do Maranhão, Brasil. [Albian-Cenomanian fish from the Itapecuru            |
| 501 | group in the Maranhão State, Brazil]. In: Rossetti DF, Goés AM, Truckenbrodt         |
| 502 | W, Museu Paraense Emílio Goeldi, editors. O Cretáceo na Bacia de São Luís-           |
| 503 | Grajaú [The Cretaceous in São Luís-Grajaú Basin]. Belém (PA); p. 191-208.            |
| 504 | Eddy DR, Clarke JA. 2011. New information on the cranial anatomy of                  |
| 505 | Acrocanthosaurus atokensis and its implications for the phylogeny of                 |
| 506 | Allosauroidea (Dinosauria: Theropoda). PLOS ONE. 6 (3): e17932.                      |
| 507 | Ferreira CS, Carvalho IS, Vicalvi MA, Santos MECM, Carvalho MSS, Eugenio WS.         |
| 508 | 1991. Novas ocorrências de fósseis na Formação Itapecuru, Cretáceo do                |
| 509 | Maranhão [New fossils occurrences in the Itapecuru Formation, Cretaceous of          |
| 510 | Maranhão] An Acad Bras Cienc, 63, 98-99.                                             |
| 511 | Góes AM, Rossetti DF. 2001. Gênese da Bacia de São Luís-Grajaú, Meio Norte do        |
| 512 | Brasil [Genesis of the São Luís-Grajaú Basin, Middle North of Brazil]. In:           |
| 513 | Rossetti DF, Goés AM, Truckenbrodt W, Museu Paraense Emílio Goeldi,                  |
| 514 | editors. O Cretáceo na Bacia de São Luís-Grajaú [The Cretaceous in São Luís-         |
| 515 | Grajaú Basin]. Belém (PA): p. 15–30. Brazilian Portuguese.                           |

|     | Journal Pre-proof                                                                    |
|-----|--------------------------------------------------------------------------------------|
| 516 | Goloboff PA, Catalano SA, 2016. TNT, version 1.5, including a full implementation of |
| 517 | phylogenetic morphometrics. Cladistics 32(3): 221–238.                               |
| 518 | Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software       |
| 519 | package for education and data analysis. Palaeontol. Electron, 4(1): 9.              |
| 520 | Hendrickx C, Mateus O. 2014. Abelisauridae (Dinosauria: Theropoda) from the Late     |
| 521 | Jurassic of Portugal and dentition-based phylogeny as a contribution for the         |
| 522 | identification of isolated theropod teeth. Zootaxa. 3759(1): 001-074.                |
| 523 | Hendrickx C, Mateus O, Araújo R. 2015. A proposed terminology of theropod teeth      |
| 524 | (Dinosauria, Saurischia). Journal of Vertebr Palaeon. 35(5): e982797.                |
| 525 | Hendrickx C, Mateus O, Araújo R, Choiniere J. 2019. The distribution of dental       |
| 526 | features in non-avian theropod dinosaurs: Taxonomic potential, degree of             |
| 527 | homoplasy, and major evolutionary trends. Palaeontologica Electronica, 22(3).        |
| 528 | Hendrickx C, Stiegler J, Currie PJ, Han F, Xu X, Choiniere JN, Wu XC. 2020a. Dental  |
| 529 | anatomy of the apex predator Sinraptor dongi (Theropoda: Allosauroidea) from         |
| 530 | the Late Jurassic of China. Can J Earth Sci, 57(9): 1127-1147.                       |
| 531 | Hendrickx C, Tschopp E, D'Ezcurra M. 2020b. Taxonomic identification of isolated     |
| 532 | theropod teeth: the case of the shed tooth crown associated with Aerosteon           |
| 533 | (Theropoda: Megaraptora) and the dentition of Abelisauridae. Cretaceous              |
| 534 | Research, 108, 104312.                                                               |
| 535 | Holtz TR, Molnar RE Jr, Currie PJ. 2004. Basal Tetanurae. Pp. 71-110, in D.B.        |
| 536 | Weishampel, P. Dodson and H. Osmólska (eds.), The Dinosauria. Second Edition.        |
| 537 | University of California Press.                                                      |

## 538 Ibrahim N, Sereno PC, Varricchio DJ, Martill DM, Dutheil DB, Unwin DM, Baidder L, 539 Larsson HCE, Zouhri S, Kaoukaya A. 2020. Geology and paleontology of the 540 upper cretaceous Kem Kem group of eastern Morocco. ZooKeys, 928, 1. 541 Kellner AW, Campos DDA. 2002. On a theropod dinosaur (Abelisauria) from the 542 continental Cretaceous of Brazil. Arguivos do Museu Nacional, 60(3):163-170. Kischlat EE, Carvalho IS. 2000. A specimen of Araripemys barretoi Price (Chelonii, 543 Pleurodira) from the Itapecuru Formation (Lower Cretaceous of Northeastern 544 Brazil). In: Proceedings of the Simpósio Brasileiro de Paleontologia de 545 546 Vertebrados, Rio de Janeiro. Rio de Janeiro: Museu Nacional/ UFRJ. 2, p.33. 547 Lima EM, Leite JF. 1978. Projeto Estudo global dos recursos Minerais da Bacia Sedimentar do Parnaíba [Project Global Study of the mineral resources of the 548 Parnaíba Sedimentary Basin]. Companhia de Pesquisas de Recursos Minerais 549 (CPRM), Pernambuco, v. 1 e 2. 550 551 Malafaia E, Mocho P, Escaso F, Ortega F. 2020. A new carcharodontosaurian theropod 552 from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. Journal of Vertebrate Paleontology, 40(1): e1768106 553 554 Medeiros MA. 2001. A Laje do Coringa (Ilha do Cajual, Bacia de São Luís, Baía de São 555 Marcos, MA): Conteúdo fossilífero, bioestratinomia, diagênese e implicações na 556 paleobiogeografia do Mesocretáceo do nordeste brasileiro [Laje do Coringa (Cajual Island, São Luís Basin, São Marcos Bay, MA): Fossiliferous content, 557 biostratinomy, diagenesis and paleobiogeography implications of 558 559 Mesocretaceous in northeastern Brazil] [dissertation]. Porto Alegre (RS): Universidade Federal do Rio Grande do Sul. Brazilian Portuguese. 560

561 Medeiros MA, Freire PC, Pereira AA, Santos RAB, Lindoso RM, Coelho ADA, Passos

|     | Journal Pre-proof                                                                    |
|-----|--------------------------------------------------------------------------------------|
| 562 | EB, Sousa E. 2007. Another African dinosaur recorded in the Eocenomanian of          |
| 563 | Brazil and a revision on the paleofauna of the Laje do Coringa site. Paleontol:      |
| 564 | Cenár Vida. 1, 413-423.                                                              |
| 565 | Medeiros MA, Lindoso RM, Mendes ID, Carvalho IS. 2014. The Cretaceous                |
| 566 | (Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara          |
| 567 | Formation), northeastern South America. J S Am Earth Sci. 53, 50-58.                 |
| 568 | Medeiros MA, Schultz CL. 2001. Uma paleocomunidade de vertebrados do Cretáceo        |
| 569 | médio, Bacia de São Luís. [A paleocommunity of vertebrates from the middle           |
| 570 | Cretaceous, São Luís Basin]. In: Rossetti DF, Goés AM, Truckenbrodt W, Museu         |
| 571 | Paraense Emílio Goeldi, editors. O Cretáceo na Bacia de São Luís-Grajaú [The         |
| 572 | Cretaceous in São Luís-Grajaú Basin]. Belém (PA); p. 209-221.                        |
| 573 | Medeiros MA, Schultz CL. 2002. A fauna dinossauriana da "Laje do Coringa",           |
| 574 | Cretáceo médio do Nordeste do Brasil [The dinosaur fauna of "Laje do                 |
| 575 | Coringa", mid-Cretaceous in Northeast Brazil]. Arq Mus Nac. 60(3):155-162.           |
| 576 | Brazilian Portuguese.                                                                |
| 577 | Nobre PH. 2004. Morfologia pós-craniana de Candidodon itapecuruense                  |
| 578 | (Crocodylomorpha, Mesoeucrocodylia), do Cretáceo do Brasil. [Postcranial             |
| 579 | morphology of Candidodon itapecuruense (Crocodylomorpha,                             |
| 580 | Mesoeucrocodylia), from the Cretaceous of Brazil]. Rev Bras Paleontol, 7(1):         |
| 581 | 87-92. Brazilian Portuguese.                                                         |
| 582 | Novas 1997. Abelisauridae. In: Currie, P. J., and Padian, K. (eds.). Encyclopedia of |
| 583 | Dinosaurs. Academic Press, San Diego. Pp. 1–2.                                       |

|     | Journal Pre-proof                                                                 |
|-----|-----------------------------------------------------------------------------------|
| 584 | Novas FE, Agnolín FL, Ezcurra MD, Porfiri J, Canale JI. 2013. Evolution of the    |
| 585 | carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia.         |
| 586 | Cretaceous Research, 45: 174–215.                                                 |
| 587 | Ortega F, Escaso F, and Sanz JL. 2010. A bizarre, humped Carcharodontosauria      |
| 588 | (Theropoda) from the Lower Cretaceous of Spain. Nature 467: 203–206.              |
| 589 | Pedrão E, Arai M, Barrilari IMR, Carvalho IS. 1993a. Análise palinológica de uma  |
| 590 | amostra de superfície de Querru (Formação Itapecuru), Município de Itapecuru-     |
| 591 | Mirim – MA [Palynological analysis of a surface sample from Querru (Itapecuru     |
| 592 | Formation), Municipality of Itapecuru-Mirim – MAJ. Rio de Janeiro (RJ):           |
| 593 | Petrobras, 11 p. [Technical report].                                              |
| 594 | Pedrão E, Arai M, Carvalho IS, Ferreira CS. 1993b. Palinomorfos de sedimentos     |
| 595 | albianos (Formação Itapecuru) da Bacia do Parnaíba [Palynomorphs of Albian        |
| 596 | sediments (Itapecuru Formation) in the Parnaíba Basin]. Rio de Janeiro (RJ):      |
| 597 | Petrobras, Cenpes, 13 p. [Technical report].                                      |
| 598 | Pereira AA, Sousa EP, Medeiros MA. 2013. Novos registros de peixes no vale do Rio |
| 599 | Itapecuru (Formação Itapecuru, Cretáceo, Estado do Maranhão). In: Prooceedings    |
| 600 | of the Congresso de Paleontologia/I Simpósio de Paleontologia Brasil-Portugal,    |
| 601 | 23., 2013, Gramado (RS): p.263.                                                   |
| 602 | Pereira PVGC, Ribeiro TB, Brusatte SL, Candeiro, CRA, Marinho TS, Bergqvist LP.   |
| 603 | 2020. Theropod (Dinosauria) diversity from the Potiguar basin (Early-Late         |
| 604 | Cretaceous Albian – Cenomanian), Northeast Brazil. Cretac Res, 114:               |
| 605 | 104517.Ribeiro LL, Moraes-Santos HM, Medeiros MA. 2003. Ocorrência de             |
| 606 | Theropoda na localidade Coroatá, centro-leste do Maranhão [Theropoda              |
| 607 | occurrence in the Coroatá locality, central-eastern Maranhão]. Paleontol Dest.    |

|     | Journal Pre-proof                                                                      |
|-----|----------------------------------------------------------------------------------------|
| 608 | 44:50. Brazilian Portuguese.                                                           |
| 609 | Sales MA, Oliveira IA, Schultz CL. 2018. The oldest abelisaurid record from Brazil and |
| 610 | the palaeobiogeographic significance of mid-Cretaceous dinosaur assemblages            |
| 611 | from northern South America. Palaeogeogr Palaeoclimatol Palaeoecol, 508, 107-          |
| 612 | 115.                                                                                   |
| 613 | Sereno PC, Brusatte SL. 2008. Basal abelisaurid and carcharodontosaurid theropods      |
| 614 | from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica              |
| 615 | Polonica, 53(1), 15-46.                                                                |
| 616 | Sereno PC, Dutheil DB, Larochene M, Larsson HCE, Lyon GH, Magwene PM, Sidor            |
| 617 | CA, Varricchio DJ, Wilson JA. 1996. Predatory dinosaurs from the Sahara and            |
| 618 | Late Cretaceous faunal differentiation. Science, 272: 986–991.                         |
| 619 | Smith JB, Vann DR, Dodson P. 2005. Dental morphology and variation in theropod         |
| 620 | dinosaurs: implications for the taxonomic identification of isolated teeth. Anat       |
| 621 | Rec A Discov Mol Cell Evol Biol. 285, 699–736.                                         |
| 622 | Stovall JW, Langston W. 1950. Acrocanthosaurus atokensis, a new genus and species      |
| 623 | of Lower Cretaceous Theropoda from Oklahoma. Am Midl Nat. 43: 696–728.                 |
| 624 | Stromer E. 1931. Ergebnisse der Forschungsrisen Prof. E. Stromers inden                |
| 625 | WüstenÄgyptens.II. Wirbeltierreste der Baharje-Stufe (unter-stes Cenoman). 10.         |
| 626 | Ein Skelett-Rest von Carcharodontosaurus no.gen. Abhandlungen der                      |
| 627 | Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche           |
| 628 | Abteilung, Neue Folge 9:1–23.                                                          |
| 629 | Tabaste N. 1963. Étude de restes de poissons du crétacé saharien.Mélanges              |

630 ichthyologiques, Mémoire IFAN 68: 437-485.

| urn | $D_{1}$ | n | $\mathbf{r}c$ | $\mathbf{v}$ |
|-----|---------|---|---------------|--------------|
| սու |         | Ρ |               |              |

| 631 | Vicalvi MA, Carvalho IS. 2002. Carófitas cretáceas da Bacia do Parnaíba (Formação |
|-----|-----------------------------------------------------------------------------------|
| 632 | Itapecuru), estado do Maranhão, Brasil. In: 6º Simpósio Sobre o Cretáceo no       |
| 633 | Brasil e 2º Simpósio Sobre el Cretácico de América del Sur. São Pedro, Boletim,   |
| 634 | p. 83-88.                                                                         |
| 635 | Vilas Bôas I, Carvalho IS, Medeiros MA, Pontes H. 1999. Dentes de                 |
| 636 | Carcharodontosaurus (Dinosauria, Tyrannosauridae) do Cenomaniano, Bacia de        |
| 637 | São Luís (Norte do Brasil). An Acad Bras Cienc, 71, 846–847.                      |
| 638 | Weishampel DB, Dodson P, Osmólska H. Eds. 2004. The Dinosauria. Univ of           |
| 639 | California Press.                                                                 |
| 640 | Zaher H, Pol D, Navarro BA, Delcourt R, Carvalho AB. 2020. An Early Cretaceous    |
| 641 | theropod dinosaur from Brazil sheds light on the cranial evolution of the         |
| 642 | Abelisauridae. Comptes Rendus Palevol, 19(6): 101-115.                            |
| 643 |                                                                                   |

## 644 **Figure Captions**

645 Figure 1. Geographic and stratigraphic distribution of CPHNAMA VT-1502 from the

646 Lower Cretaceous Parnaíba Basin. The star marks the outcrop's location (coordinates

647 3°55'39.56''S, 44°09'38.41''W). Modified from França et al. (2021).

648 Figure 2. CPHNAMA VT-1502, a shed tooth crown referred to Carcharodontosaurinae

649 indet. in (A) mesial, (B) labial, (C) distal, (D) lingual, (E) apical and (F) basal views.

650 Abbreviations: dca, distal carina; ids, interdenticular sulcus; mca, mesial carina. Scale

651 bar = 1 cm.

Figure 3. Graphical results of the discriminant analysis at clade level (79.93% of the

653 crowns were correctly identified) of 682 teeth belonging to 45 taxa and ten groups of

| 654                      | non-avian theropods: Abelisauridae (yellow), early-branching Coelurosauria (violet),                                          |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 655                      | Carcharodontosauridae (magenta), Compsognathidae (light green), Dromaeosauridae                                               |
| 656                      | (blue), Neovenatoridae (red), non-abelisaurid Ceratosauria (orange), Noasauridae                                              |
| 657                      | (brown), Pantyrannosauria (purple), and Spinosauridae (dark green). Specimen                                                  |
| 658                      | CHPHNAMA VT-1502 (black dot) plots within the morphospaces of the Abelisauridae                                               |
| 659                      | and Carcharodontosauridae. Theropod silhouettes from phylopic.org (artist:                                                    |
| 660                      | Dromaeosauridae by Emily Willoughby; Scott Hartman for the other silhouettes).                                                |
| 661                      | 98                                                                                                                            |
| 662                      | Figure 4. Most parsimonious tree from a cladistic analysis performed on a dentition-                                          |
| 663                      | based datamatrix of 148 characters scored in 107 non-avian theropod taxa (L=1,362; CI                                         |
| 664                      | =0.195; RI=0.435). Black silhouettes taken from phylopic.org (artist: Scott Hartman). I.                                      |
| 665                      | s.: Incertae sedis.                                                                                                           |
| 666                      | Figure 5. Dentition-based synapomorphies in Carcharodontosauridae. The dental                                                 |
| 667                      | synapomorphies 98, 99 and 109 constrain the clade Carcharodontosaurinae. Black                                                |
| 668                      | silhouette taken from phylopic.org (artist: Scott Hartman).                                                                   |
| 669                      |                                                                                                                               |
| 670                      | Table 1. Crown-based measurements taken on CPHNAMA VT-1502.                                                                   |
| 671<br>672<br>673<br>674 | Color legend: green, measurements in millimeters; yellow, crown-based ratios; rose, number of denticles per five millimeters. |
| 675                      |                                                                                                                               |
| 676                      |                                                                                                                               |
| 677                      |                                                                                                                               |
| 678                      |                                                                                                                               |
| 679                      |                                                                                                                               |

## 680 APPENDIX

681

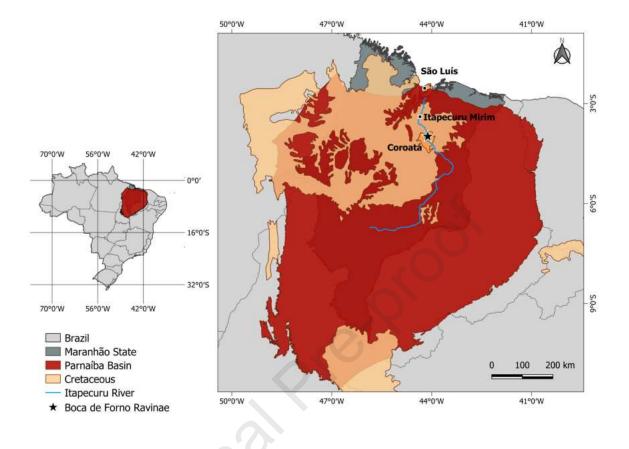
682 Coding of CPHNAMA VT-1502 in Hendrickx et al.'s (2020) dentition based
683 datamatrix. See Supplementary Data for the dentition-based character list.

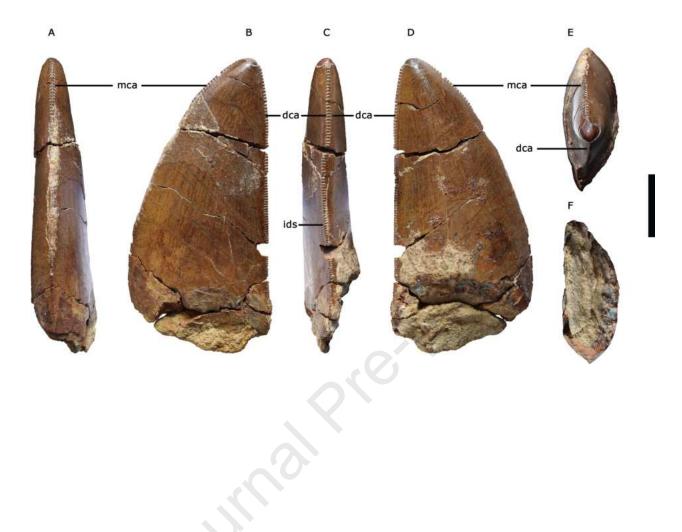
- 684
- 685 CPHNAMA VT-1502
- 687 ????????????????????111301010000020?110221[01][01]0011

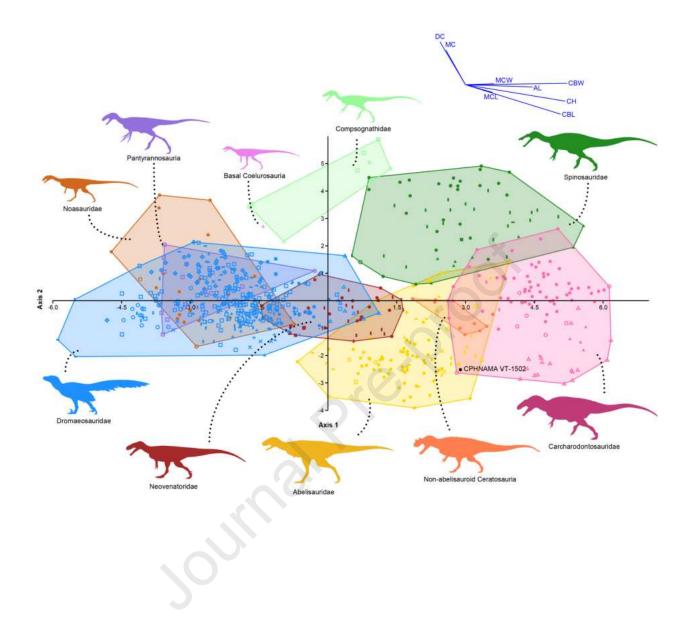
ournal Pre

- 689 ??
- 690

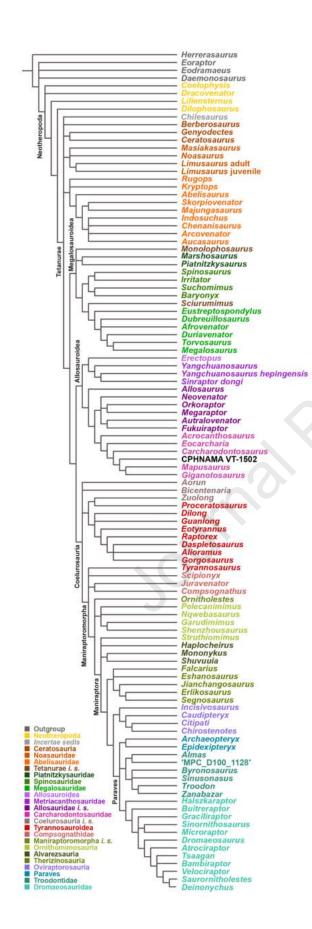
## APPENDIX


Coding of CPHNAMA VT-1502 in Hendrickx et al.'s (2020a) dentition based datamatrix. See Supplementary Data for the dentition-based character list.


## CPHNAMA VT-1502


Johnalbredi

| CBL  | CBW  | СН   | AL   | CBR  | CHR  | MCL  | MCW  | MCR  | MC | DC |
|------|------|------|------|------|------|------|------|------|----|----|
| 22.8 | 8.78 | 42.8 | 127  | 0.39 | 1.88 | 18 7 | 7.29 | 0.39 | 10 | 11 |
| 22.0 | 0.70 | 42.0 | 42.7 | 0.39 | 1.00 | 10.7 | 1.29 | 0.39 | 10 | 11 |


7.9








Journal Prevention







## **Declaration of interests**

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prevention

## **Declaration of interests**

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prevention