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Abstract

The Adamantina Formation hosts one of the most well-documented Late Cretaceous
continental faunas in South America, with crocodyliforms standing out for their unusual
richness and ecomorphological diversity. While their taxonomy and anatomy have been

widely studied, the understanding of their fossilization processes has been largely
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overlooked. Here, we apply a multi-technique approach to analyze diagenetic alterations
of the skeletal elements of crocodyliforms from the Adamantina Formation, combining
information from energy dispersive X-ray fluorescence, scanning electron microscopy
with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, and X-ray
diffraction. Our results indicate significant structural and compositional changes,
including loss of the organic matrix, void permineralization, ionic substitutions, and
recrystallization. Although organic molecules were not unambiguously detected, some
Raman spectra exhibited bands in the 1000-1800 cm™ range that resemble signals
previously linked to organic compounds, but which may instead result from fluorescence
induced by rare earth elements. Void-filling minerals reflect the prevailing influence of
both alkaline (e.g., calcite, relict siderite) and oxidizing (iron oxyhydroxides) pore waters.
All samples showed transformation of the original bioapatite into carbonated fluorapatite,
highlighting the importance of the precipitation of a more thermodynamically stable
phase for the long-term survival of skeletal remains. Raman spectroscopy further revealed
differences in fossil apatite preservation among samples, with some showing less
alteration and potentially storing original chemical information. The combination of
techniques used in this study allowed a comprehensive assessment of the mode and degree
of diagenetic alteration of crocodyliform remains, which might be useful when selecting

samples for molecular or isotopic studies.

Keywords: Diagenesis; Fossilization; Taphonomy; Bone Preservation; Bioapatite

1. Introduction

Fresh bone and teeth consist of an association of organic (i.e., collagen, lipids)

and inorganic fractions (Pfretzschner, 2004; Trueman et al., 2008; Keenan and Engel,
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2017; Shah, 2025). These mineralized tissues differ structurally as the tooth enamel is
harder, less porous, and contains less organic matter than dentine and bone. Dentine is
more similar to bone in terms of organic content and crystal size, but is significantly less
porous (Kohn and Cerling, 2002; Koch, 2007; Kendall et al., 2018). Their inorganic (i.e.,
mineralized) fraction is a non-stoichiometric, carbonate-bearing hydroxyapatite
(Cas(PO4)3(OH)). The apatite lattice is particularly flexible for substitutions and can
accommodate different ions at every site [calcium (Ca), phosphate (PO4), and hydroxyl
(OH)] (Pan and Fleet, 2002; Kohn, 2008). After the death of the organism, the decay of
the organic matrix scaffold exposes the apatite surfaces to pore-waters, which become
highly reactive due to their small crystal sizes and large surface areas (Weiner and Price,
1986; Chinsamy-Turan, 2005). During diagenesis, skeletal remains are affected by many
processes, including dissolution, recrystallization, incorporation of foreign elements, and
infilling of voids with authigenic or detrital minerals (Hubert et al., 1996; Trueman, 1999;
Kohn and Cerling, 2002; Trueman and Tuross, 2002; Berna et al., 2004; Pfretzschner,
2004; Trueman et al. 2004, 2006, 2008; Kohn, 2008; Koenig et al., 2009; Rogers et al.,
2010; Suarez et al., 2010; Kohn and Moses, 2013; Keenan, 2016; Keenan and Engel,
2017; Previtera, 2017; Rogers et al., 2020; Bosio et al., 2021; Kral et al., 2024; Laker et
al., 2024; Yamamura et al., 2024). Such modifications can be informative to reconstruct
past environments or preservational mechanisms but can severely overprint or erase the
original chemical compositions of skeletal tissues.

The study of Cretaceous crocodyliform fossils has helped clarify several
paleoecological and paleoenvironmental aspects in continental ecosystems, including the
organization of trophic structures, feeding strategies, and habitat preferences (Osi, 2014;
Godoy et al., 2014; Tori and Carvalho, 2018; Melstrom and Irmis, 2019; Montefeltro et

al., 2020; Nieto et al., 2022; White et al., 2022). Chemical characterizations of fossil
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crocodyliform bones and teeth can corroborate these studies by revealing details of the
interactions between the organism and the environment, either in vivo (e.g., feeding
habits, climate) or post-mortem (diagenesis) (Domingo et al., 2015; Marchetti et al., 2019;
Alvarez et al., 2022; Klock et al., 2022). Crocodyliforms are one of the dominant
components of the paleofauna from the Late Cretaceous of Brazil (Candeiro and
Martinelli, 2006; Langer et al., 2022). Most occurrences are from the Adamantina
Formation, where more than 20 species have been described so far. Notably, they
occupied more diverse niches and displayed a higher ecomorphological diversity in
relation to the living representatives of the group (Riff and Kellner, 2011; Riff et al., 2012;
Godoy et al., 2014). Despite some progress made towards the understanding of major
processes involved in the preservation of crocodyliforms from the Adamantina
Formation, taphonomical studies are scarce and mainly focused on the biostratinomical
stage (Azevedo, 2012, 2013; Aratjo-Junior and Marinho, 2013; Bandeira et al., 2018).
Almost nothing is known about how diagenesis affected their skeletal remains and
ultimately promoted their fossilization (Goldberg and Garcia, 2000; Marchetti et al.,
2019; Pinto et al., 2020). Investigating bioapatite modification in fossils not only provides
important information on diagenetic processes and burial conditions but is also key to
evaluating the potential preservation of biogenic signals, whether recorded in elemental
and isotopic compositions or represented by remnants of original biomolecules.

Here, we use a multi-technique approach to document the diagenetic alterations
of crocodyliform specimens from the Adamantina Formation, combining data from
energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with energy
dispersive X-ray spectroscopy (SEM-EDS), micro-Raman spectroscopy, and X-ray
diffraction (XRD). We identify the main preservational mechanisms and advance

understanding of the elemental and structural changes of bioapatite during fossilization.
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We also discuss the implications of our diagenetic assessment of the crocodyliform fossil

remains for the potential recovery of biogenic signals.

2. Material and Methods
2.1 Materials

A total of 24 fossil samples were selected from crocodyliform specimens from six
different Adamantina Formation localities (see Table 1 and Fig. 1 for details). This
material is housed at the Laboratério de Paleontologia de Ribeirdo Preto, University of
Sdo Paulo, Brazil. The Adamantina Formation is one of the most widely distributed units
of the Bauru Group, outcropping in the states of Sdo Paulo, Minas Gerais, Goids, and
Mato Grosso do Sul (Fernandes and Coimbra, 1996; Menegazzo et al., 2016). It typically
comprises reddish, fine to very fine sandstones that are massive or display cross-
stratification. The sandstones are sometimes intercalated by mudstone or conglomerates
(Soares et al., 1980; Batezelli, 2015; Menegazzo et al., 2016; Soares et al., 2020). The
depositional setting is usually interpreted as a fluvial environment under a warm, arid to
semi-arid climate (Batezelli, 2015; Basilici et al., 2016; Batezelli et al., 2019). Some
lithostratigraphic proposals have suggested division of the Adamantina Formation in the
state of Sao Paulo into smaller units, such as the Vale do Rio do Peixe, Sdo José do Rio
Preto, and Presidente Prudente formations (Fernandes and Coimbra, 2000). However,
since the Adamantina Formation is widely regarded in the literature as a single unit at the
formation level, we adopted this convention in our study (see discussion in Langer et al.,
2022; Delcourt et al., 2024). The age of the Adamantina Formation is debated, but a
Campanian—Maastrichtian age is commonly suggested based on palynology and
vertebrate fauna (Langer et al., 2022; Arai and Fernandes, 2023; Gobbo and Bertini,

2023).
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[insert Figure 1 here]

The analyses were performed on 12 specimens derived from the crocodyliform
species Aplestosuchus sordidus (Godoy et al., 2014), Aphaurosuchus escharafacies
(Darlim et al., 2021), Pissarrachampsa sera (Montefeltro et al., 2011), Mariliasuchus sp.,
and other unidentified crocodyliforms. The sampled material includes teeth and different
types of bones. Sampling focused on skeletal elements that were already disarticulated
and/or fragmented to prevent further damage to the specimens. We also avoided samples
with clear evidence of glues or other stabilizing products. Sediment samples originally
associated with the fossil specimens were also analyzed whenever possible. Details about
each sample are provided in Table 1.

For comparative purposes, we analyzed skull fragments and teeth from a modern
caimanine alligatorid carcass, collected by a herpetologist on the banks of the Miranda
River in the state of Mato Grosso do Sul, Brazil. The same analytical parameters were

applied to both the fossil and modern samples.

[insert Table 1 here]

2.2 Methods
2.2.1 SEM-EDS

Uncoated samples were analyzed using a scanning electron microscope (SEM)
JEOL JSM6610LV with backscatter detection (BSE) and equipped with an energy-

dispersive X-ray spectroscopy detector (EDS) controlled by the software OXFORD
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INSTRUMENTS X-MAX at the University of Sdo Paulo (Ribeirdo Preto). Prior to
analysis, samples were polished using silicon carbide papers ranging from 320 to 2500
grit. Analyses were conducted at 20 kV, with spot size between 71 to 78 um, and working
distance ranging from 8 to 15 mm. Elemental maps and point spectra were collected from
different parts of bone/teeth, including vascular canals and cracks, and analyzed in the

software AZtec 3.0 SP1.

2.2.2 Micro-Raman spectroscopy

A Renishaw InVia micro-Raman spectrometer (AstroLab, University of Sao
Paulo) coupled to 532 and 785 nm lasers with the static measurement mode was used to
investigate a broad range of mineral phases, including apatites, oxides, and carbonates.
Different powers and times were tested to obtain the most informative spectra. We
adjusted parameters according to 25 mW, using an LW 50x objective, with 30
accumulations of 2 seconds each. The software SpectraGryph 1.2 was used for the
treatment and identification of Raman vibrational bands. We normalized (0—1) and
subtracted the baseline of all spectra. The raw data were considered for those spectra
whose fluorescence and luminescence effects were enhanced with this type of treatment.
Mineral standards, the RRUFF database (Lafuente et al., 2015), and spectra described in
the literature (Table 2) were used to compare and thus identify the bands obtained in the

material studied.

2.2.3 XRF
XRF analyses were conducted using a portable EDXRF system composed of an
Amptek silver (Ag) X-ray tube and an Amptek Silicon XR-100SDD FAST detector at the

Laboratory of Archacometry and Sciences Applied to Cultural Heritage (LACAPC),
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University of Sao Paulo (USP). Measurements were performed directly on the samples
using a voltage of 30 kV, a current of 5 pA, and an acquisition time of 300s (without
collimator). Data fitting was performed using a Windows version of the software system

QXAS (WinQXAS 1.4), developed by the International Atomic Energy Agency (IAEA).

2.2.4 XRD

Mineralogical analysis was performed using a D8 Bruker diffractometer
(Laboratory of X-ray diffraction, Institute of Geosciences, University of Sdo Paulo). The
diffractometer operated at a voltage of 40 kV and a current of 40 mA. The angular step
size used was 0.02 degrees 2-theta in the interval from 4 to 65 degrees 2-theta. XRD data
were interpreted using HighScore Plus 5.0 software (Panalytical). The Crystallographic
Open Database (COD, Grazulis et al., 2009) was used as a reference for identifying
mineral phases. The Rietveld method (Rietveld, 1967) was employed for quantitative
phase analysis using HighScore Plus 5.0 software; refined parameters were scale factor,

cell parameters, peak broadening, asymmetry, shape, and preferential orientation.

3. Results

3.1 Elemental composition (XRF and SEM-EDS)

XRF and SEM-EDS analyses consistently revealed contrasting elemental
compositions between the fossil skeletal remains and their host matrix (Fig. 2, Fig. 3, Fig.
S.1; Table S.1; Table S.2). As expected, both techniques showed elevated counts of
calcium (Ca) and phosphorus (P) in the fossil bones and teeth, reflecting their apatite
composition (Fig. 2, Fig. 3). SEM-EDS elemental maps further confirmed the

homogeneous distribution of Ca, P, and oxygen (O) within the fossil skeletal remains.
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In addition, EDS analyses identified the presence of fluorine (F), sodium (Na),
magnesium (Mg), strontium (Sr), and cerium (Ce) in the sampled areas of fossil bones
and teeth. XRF data also indicated an overall enrichment of several trace elements in
fossil samples compared to modern crocodylian samples, including manganese (Mn),
strontium (Sr), yttrium (Y), barium (Ba), cerium (Ce) and thorium (Th), which were either
absent or occurred at very low levels in recent samples (Fig. 2; Table S.2). Among fossil
samples, elements such as Mn, Fe, Sr, Y, Ba, and Ce have generally higher counts in bone
than in teeth, with enamel typically displaying the lowest counts (Fig. 2).

The four most abundant void-filling elements within fossil bones and teeth were
manganese, cerium, iron, and calcium (Table S.1). Of the 27 fossil samples mapped by
SEM-EDS analysis, manganese was the most frequent void-filling element, occurring in
vascular canals and cracks of 21 samples (77%), often resulting in darker staining in
isolated teeth (LPRP/USP 0794, MPPC SN). Cerium was detected in similar voids in 20
samples (74%), while iron occurred in eight samples (29%). In six samples (22%), the
vascular canals and fractures were filled with a mineral rich in Ca and O, but deficient in
P, consistent with calcite. These calcite infillings, notably in LPRP/USP 0786 (long
bone), LPRP/USP 0791 (osteoderm), and LPRP/USP 0050 (vertebra), are often
associated with the presence of micro-fracturing in cortical and cancellous bone (Fig. 4).

The host rocks, as confirmed by both XRF and SEM-EDS, are compositionally
distinct from the fossil material, showing higher levels of silicon (Si), aluminum (Al),
potassium (K), and iron (Fe). XRF results also revealed elevated counts of titanium (T1),
chromium (Cr), copper (Cu), rubidium (Rb), and zirconium (Zr) in the rock samples.
Although the elements Fe, K, and zinc (Zn) had higher counts in the rock samples, they

were also detected in fossil bones and teeth via XRF analysis.
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[insert Figure 2 here]

[insert Figure 3 here]

[insert Figure 4 here]

3.3 XRD

The XRD patterns of fossil specimens and associated rock matrix are shown in
Figure S.2. Measured percentages of the mineral composition of the samples are
presented in Table S.3. Fluorapatite is confirmed as the main mineral phase of the fossil
bone and tooth samples (93.7-100%). Secondary minerals were also identified in these
samples and include quartz (0.8-2.3%), calcite (0.2-2.8%), siderite (0.4-1.2%), goethite
(1.5%), and pyrolusite (1.1%). Rock samples are mainly composed of quartz (51.9—
75.7%) and might include illite (3—16%), vermiculite (3.2—13.6%), calcite (1.7-33.2%),
plagioclase (5.5-17.6%), clinopyroxene (2.4-13.1%), goethite (1.5%), and sylvite
(0.3%). Sample 7 (LPRP/USP 0050; Fig. S.3) is a mixture of fossil bone and encasing
rock, which explains the low abundance of fluorapatite (8%) and the identification of

quartz, vermiculite, and analcime.

3.4 Micro-Raman

We obtained Raman spectra in the 200-3800 cm™' range for modern and fossil
skeletal tissues and rocks. Figure 5 shows representative spectra from the analyzed
samples. The main peaks are attributed to characteristic vibrations of phosphate,
carbonate, and collagen (Fig. 5, Table 2). In modern bone, the most intense band at 960

cm’! represents the v1(PO4) symmetrical stretching mode of the phosphate in apatite. The
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v2(PO4) and v4(PO4) bending modes were also observed near 430 cm™ and 582 cm!,
respectively. A strong band near 1071 cm™ is compatible with the v1(CO3) mode of
carbonate ions occupying phosphate sites (B-type substitution). Besides the peaks
associated with the mineral portion of the modern bone, less intense bands related to
collagen vibrations were also identified: proline (851-854 cm™), phenylalanine (~1002
cm'), amide IIT (1239-1247 cm™), amide 1 (1650-1690 cm™), and C-H bending and
stretching modes (1447-1452 cm™ and 2800-3060 cm™!, respectively) (Table 2).

The typical v1, v2, and v4 modes of PO4 and the vl mode of CO3 (B-type) were
observed in static spectra (200-1300 cm™) for both modern tooth enamel and dentine.
The v1(PO4) mode in the modern tooth spectra was slightly shifted to lower frequencies
compared to modern bone, located at 959.6 = 1.2 cm™. Organic bands were barely
detected in the static spectra, except for proline peaks in a few spectra. An extended
spectrum, however, showed that all main organic peaks are present in the dentine of the
modern specimen (Fig.5). The organic bands in the extended spectrum of the enamel are
weaker or not detectable, except for a distinct peak at ~2940 cm™ related to the C-H

stretching mode (Fig.5B).

[insert Table 2 here]

The selected crocodyliform fossils have variations in their Raman spectra, with
recovered values more scattered and sometimes shifted in comparison to the analyzed
modern bone and teeth (Fig. 5, Fig. 6, Fig. S.5; Table S.4). The v1(PO4) peak in the fossils
is shifted to higher frequencies, presenting narrower bands (smaller FWHM values) (Fig.
S.5). Raman spectra from the modern bone had an average v1(PO4) peak position at 960.4
+0.2 cm™! and width of 17.8 [0.2] cm™'. Slightly lower values were found for the modern

tooth, with the mean v1(POa4) peak location at 959.6 £1.2 cm™ and width of 15.1 £1 cm™
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!, By contrast, the average v1(PO4) peak position and width were 964.1 +2 cm™ and 12.1
+1.1 em’!, respectively, for fossil specimens. Other bands assigned to phosphate (v2 and
v4) and carbonate (v1) vibration modes in modern apatite were also detected in static
spectra of the fossil bones and teeth, although some were not observed in extended spectra
(Fig. 5A).

In contrast to the Raman spectra of the modern crocodylian bone and tooth, the
spectra from the fossil specimens show an overall loss of organic bands. Peaks related to
collagen vibrations, such as amide I, amide III, and C-H stretch, are not visible in any of
the fossil spectra (Fig. 5). We have detected a peak at ~850 cm™! in the extended spectrum
of A. escharafacies which could be assigned to proline, however, this peak was not
observed in the static spectra. Very low-intensity peaks at ~1005 cm™ (Mariliasuchus)
and ~1010 cm’! (Mariliasuchus, P. sera) resemble that of phenylalanine (~1002 cm™),
but they appear at higher frequencies and are only apparent after data processing (baseline
correction, smoothing). Also, putative organic peaks related to C-H bending (~1450 cm™
1) are observed in the extended spectra of A. sordidus, A. escharafacies, P. sera, and the
dentine of an indeterminate fossil crocodyliform tooth.

Extended spectra from the external bone cortex of P. sera and the dentine of an
isolated tooth recorded some intense and broad bands between the 1200-1800 cm!
interval, with the main peaks occurring at ~1190 cm™, ~1270 cm™, ~1403 cm™!, ~1540
cm!, and 1670 cm™ (Fig. 7). The identification of these bands in fossils are still unclear
and different explanations have been proposed (JuraSekova et al., 2022; Sousa et al., 2024;
see Discussion). Raman spectra from rock samples associated with the fossil specimens
only showed characteristic peaks of common minerals such as quartz, hematite, calcite,
and silicates (Table 2; Table S.5).

[insert Figure 5 here]
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[insert Figure 6 here]

[insert Figure 7 here]

4. Discussion

4.1 Effects of diagenesis on bioapatite structure and composition

The bioapatite lattice is flexible, allowing substitutions at every site (Ca>*, PO4s*,
OH") (Pan and Fleet, 2002; Kohn, 2008; Fig. 8E). Although some substitutions take place
in vivo, substantial compositional alterations occur during recrystallization after the loss
of protective collagen and exposure of crystallites to pore fluids (Weiner and Price, 1986;
Hubert et al., 1996; Trueman, 1999; Kohn and Cerling, 2002; Trueman and Tuross, 2002;
Berna et al., 2004; Pfretzschner, 2004; Trueman et al., 2004; Chinsamy-Turan, 2005;
Trueman et al., 2006; Kohn, 2008; Trueman et al., 2008; Koenig et al., 2009; Rogers et
al., 2010; Suarez et al., 2010; Keenan, 2016; Keenan and Engel, 2017; Ullmann et al.,
2020; Cowen et al., 2025; Ullman et al., 2025). Common Ca>" substitutions include
alkaline-earth metals (Mg?*, Sr**, Ba?>"), Mn?*, Na*, K", and rare earth elements (REEs),
PO4*" can be replaced by CO3* (B-type ) or other anions, and OH" is often substituted by
F-, CI', and COs* (A-type) (Hubert et al., 1996; Elliot, 2002; Pan and Fleet, 2002;
Trueman and Tuross, 2002; Wopenka and Pasteris, 2005). The incorporation of foreign
ions is influenced by many variables, such as ion availability and extent of pore fluid
interactions, charge balance within the lattice, 1on radius, and electrostatic repulsion (e.g.,

Keenan and Engel, 2017; Ullmann et al., 2020).
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SEM-EDS spectra have shown the ubiquitous presence of Ca, P, and O in fossil
bones and teeth, reflecting the original apatite chemical composition. XRF analyses also
confirmed the high intensities of Ca and P in the fossil specimens. Na, Mg, Sr, and Ce
were detected by EDS associated with the apatite signal, probably replacing the Ca lattice
sites (Keenan, 2016; Keenan and Engel, 2017). The presence of Sr and Ce agrees with
XRF results, which also showed higher counts of Mn and Fe in the fossil samples.
However, because the samples analyzed by XRF were in powdered form, it is hard to tell
to what extent the intensities of Mn, Fe, and Ce are more representative of void filling by
authigenic minerals than substitutions of Ca** for other ions in the apatite structure. XRF
data show that, on average, fossil enamel exhibited lower counts of foreign ions compared
to fossil bone and dentine, consistent with its greater resistance to diagenetic alteration
due to higher crystallinity and lower porosity (Kohn and Cerling, 2002; Koch, 2007;
Kendall et al., 2018).

Cerium was the only REE confidently detected by EDS, likely reflecting a high
concentration in the fossils. The XRF results were able to detect two other REEs in many
of the fossil samples: Y and Eu. Among the REEs, Ce and Eu are uniquely redox-sensitive
and have been used as proxies to infer environmental redox conditions during
fossilization (e.g., Trueman and Tuross, 2002; Suarez et al., 2010; Chen et al., 2015;
Gueriau et al., 2015; McLain et al., 2021; Ullmann et al., 2025). However, interpreting
deviations in their concentrations and their implications for redox conditions requires
higher-resolution analyses of broader REEs patterns (e.g., Trueman and Tuross, 2002;
Herwartz et al., 2013; McLain et al., 2021). Additionally, the detection of fluorine (F) in
fossil bioapatite by EDS indicates substitutions at the OH" sites and the precipitation of

fluorapatite.
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The rapid recrystallization of bioapatite into a more stable phase is crucial for the
long-term survival of fossil elements. Actualistic studies have shown that this process
begins early in diagenesis, sometimes even before burial (Trueman et al., 2004; Keenan
and Engel, 2017). Hydroxyapatite is unstable in many burial environments and tends to
dissolve unless it is transformed into a more thermodynamically stable mineral, such as
carbonated fluorapatite or fluorapatite (Berna et al., 2004; Keenan and Engel, 2017,
Keenan, 2023). It has been demonstrated that fluorapatite and carbonated fluorapatite
stability shift toward supersaturation under lower P concentrations and pH conditions
compared to that of hydroxyapatite (Keenan and Engel, 2017). Thus, it is not surprising
that fluoridation of bioapatite is such a widespread process, documented in many
Mesozoic vertebrate fossils, including specimens from the Bauru Group (Fernandes and
Ribeiro, 2015; Marchetti et al., 2019; Pinto et al., 2020; Klock et al., 2022).

Raman spectroscopy is highly sensitive, enabling the detection of alterations in
bioapatite chemistry and structure. Changes caused during fossilization can be mainly
monitored based on the position and the width of the v1(POs) peak. Dislocation of the
v1(POs4) peak position indicates that ionic substitutions produced shorter P-O bond
lengths and smaller unit cells (blueshifts) or longer P-O bond lengths and larger unit cells
(redshifts) (Kannan et al., 2007; Campillo et al., 2010; Thomas et al., 2011; Sousa et al.,
2020). Experimental works have identified the type and degree of dislocation of specific
ionic substitutions (Thomas et al., 2007, 2011). Progressive redshifted positions were
observed with increasing incorporation of Sr**, CO3*, and other ions into the apatite
lattice, whereas the incorporation of F~ resulted in blueshifts (Thomas et al., 2011; Fig.
6). The smaller ionic radius of F- compared to OH results in a contraction of the unit cell

in the a-axis plane and an increase in the crystal size (LeGeros, 1981; Kannan et al., 2007,
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Fig. 8D, E), which contributes to the higher thermodynamic stability of fluorapatite in
relation to hydroxyapatite (Berna et al., 2004).

The Raman spectra obtained for modern crocodylian bone and tooth had an
average v1(POs) peak position of 960.4 + 0.2 cm™ and 959.6 £ 1.2 cm™!, respectively,
which is redshifted compared to synthetic and abiotic hydroxyapatite, and matches more
closely the values for synthetic carbonated apatite (Fig. 6; Thomas et al., 2011). This
result is expected because bones and teeth are naturally enriched in CO3* ions (A-type
and B-type substitutions). All v1(POs) peak positions of fossil specimens are blueshifted,
consistent with fluoridation and transformation or replacement of the original carbonated
hydroxyapatite to fluorapatite, supporting our EDS and XRD results (Fig. 6, Fig. S.5).

The FWHM (full-width half maximum) of the v1(POs4) peak has been used as a
proxy to assess the degree of apatite crystallinity, with FWHM values being inversely
proportional to crystallinity (Thomas et al., 2007; Zhang et al., 2017; Sousa et al., 2020).
Carbonate substitutions significantly decrease crystallinity (De Mul et al., 1988; Berna et
al., 2004; Dal Sasso et al., 2018a,b), with non-carbonated hydroxyapatites and
fluorapatites (synthetic and magmatic) displaying narrower bands than carbonated
apatites (synthetic and bioapatite) (Thomas et al., 2011; Fig. 6). Although apatite
crystallinity increases with the loss of carbonate ions, its lattice is substantially enriched
by trace elements during diagenesis, which should increase atomic disorder. However,
this is counter-balanced by structural rearrangements of these ions that can narrow the
FWHM of fossil specimens (Zhang et al., 2017).

As expected, the fossil crocodyliform bone and tooth apatites revealed narrower
bands (FWHM = ~12.1 cm’!) compared to the recent ones (FWHM = ~17.8 for bones and
~15.1 for teeth). While the band position of the v1(POa4) peak shows a clear trend of fossil

specimens toward fluoridation, they are less crystalline than synthetic and magmatic
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fluorapatites (Fig. 6). One of the possible explanations is the maintained influence of
carbonate in the fluorapatite structure in reducing crystallinity, as evidenced by the
detection of the carbonate (v1) vibration mode at around 1070 cm™ in all analyzed fossil
samples (Fig. 5A). Also, geological and synthetic apatites might crystallize at higher
temperatures which favor increased crystallinity (Pang and Bao, 2003; Takeuchi et al.,
2009; Chen et al., 2017).

No significant overall correlation was found between the v1(POa4) peak position
and width (FWHM) (r = 0.11, p = 0.28; Fig. S.6D). Increased F~ incorporation generally
reflects in shifts to higher frequencies and smaller FWHM values due to the formation of
larger crystal sizes (e.g., Barthel et al., 2020). However, the diagenetic history for each
specimen is complex and involves exposure to different pore-water chemical
compositions and probably different rates and modes of recrystallization. Specimens can
incorporate or release varying amounts of different ions (e.g., CO3, Sr*"), each adding
competing trends to the v1(POa) peak position and FWHM (Thomas et al., 2007, 2011;
Zhang et al., 2017).

The heterogeneity of the phosphate stretching environment is also illustrated when
the relationship between the vI(PO4) peak position and width (FWHM) considers only
the Raman spectra collected for each specimen. We found a negative correlation between
these two parameters in the samples from Mariliasuchus (r =-0.77, p < 0.05) and P. sera
(LPRP/USP 0049A; r=-0.64, p <0.05) (Fig. S.6A, B), which probably reflects the effect
of a predominant substitution type. Other samples demonstrate very weak and non-
significant relationships between the variables, such as for P. sera (LPRP/USP 0050; r =
0.12, p = 0.12; Fig. S.6C). This diverging pattern probably indicates a more

heterogeneous ionic environment in the fossil apatite samples.



419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

We tentatively explored the effect of Sr enrichment in the v1(PO4) peak position
of the studied fossil bones, using the ratio of St/P counts based on XRF results (Table
S.6). We found a negative correlation between the two variables (r = -0.83, p = 0.08),
which is in accordance with previous studies suggesting a redshift effect of Sr** in the
apatite lattice (Thomas et al., 2011). However, the correlation did not reach statistical
significance, and this relationship might be worthy of further investigation in future

studies exploring larger sample sizes of fossil specimens.

[insert Figure 8 here]

4.2 Permineralization indicates alkaline and oxidative pore waters

The majority (more than 80%) of specimens mapped with EDS showed high
intensities of Ca, Fe, Mn, and Ce in void spaces (Figs. 3, 4; Fig. S.1). The identification
of related minerals was possible in a few samples based on micro-Raman and XRD. The
presence of calcite as a void-filler has been confirmed by Raman analysis of two bone
samples (LPRP/USP 0049A and 0050; Fig. S.4). XRD confirmed our micro-Raman
results, showing that most fossil skeletal samples contain calcite. Iron and manganese
minerals were detected in only one sample (LPRP/USP 0794) and identified as goethite
and pyrolusite, respectively. The XRD results also indicated the presence of siderite in
half of the analyzed fossil samples.

Mn oxides and Fe (hydr)oxides are common void-filling materials in vertebrate
fossils (Pfretzschner, 2004; Schweitzer et al., 2014; Boatman et al., 2019). Their
formation is often associated with late or post-diagenetic processes. Under seasonal
wet/dry climates and alkaline oxidizing microenvironments, mobile ions (Fe?*, Mn?") can

infiltrate empty cavities in periods of water saturation and precipitate as highly insoluble
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oxides during dry periods (Pereda-Superbiola et al., 2000; Luque et al., 2009; Tomassini
etal., 2014; Previtera et al., 2016; Fig. 8A-C). Organic degradation and microbial activity
may also play a role in their precipitation (Pfretzschner and Tiitken, 2011; Santelli et al.,
2011; Owocki et al., 2016). For instance, iron can precipitate first as pyrite (FeS2) within
bone voids under low redox conditions generated by organic decay and sulfide production
mediated by sulfate-reducing bacteria (Berner, 1984; Canfield and Raiswell, 1991;
Pfretzschner, 2004; Vietti et al., 2015; Bosio et al., 2021), which may later oxidize into
iron (hydro)oxides (Pfretzschner, 2001a,b; 2004; Rogers et al., 2020; Laker, 2024). Iron
may also derive from endogenous sources, such as the degradation of hemoglobin and
other iron-bearing biomolecules during early diagenesis. This process can lead to
localized iron precipitation and potentially facilitate the preservation of biomolecules in
fossils (Schweitzer et al., 2014; Boatman et al., 2019).

Cerium (Ce) is notably present in bone/tooth voids in the majority of analyzed
samples (74%). While bioapatite can incorporate Ce and other REEs during fossilization
(Trueman and Tuross, 2002; Keenan, 2016; Keenan and Engel, 2017), they are rarely
mentioned as important void-filling materials. Under oxidizing conditions, Ce can be
oxidized to CeO: or adsorbed onto Fe and Mn (hydro)oxides (Koeppenkastrop and De
Carlo, 1993; Suarez et al., 2010; Suarez et al., 2018). EDS maps show Ce-enriched voids
sometimes co-occurring with Fe and Mn-bearing minerals (Fig. 3; Fig. S.1), suggesting
CeO2 formation or adsorption onto Mn/Fe (hydro)oxides. Additionally, Ce may be
incorporated into calcium carbonate minerals by substituting for Ca** (e.g., Zhao et al.,
2021).

Fossil bone voids are frequently filled by calcite (e.g., Hubert et al., 1996; Holz
and Schultz, 1998; Pfretzchner, 2004; Wings, 2004; Riga and Astini, 2007; Luque et al.,

2009; Rogers et al., 2020). It has been identified in more than 20% of analyzed samples.
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The formation of calcite is associated with rapid evaporation of meteoric waters and
variations in the phreatic level, which supplies bone and teeth with alkaline CaCO3-
enriched pore waters (Wright and Tucker, 1991; Holz and Schultz, 1998; Dal Sasso et al.,
2014). The interior of some specimens (Fig. 4) showed bone fragments ‘floating’ or
significantly displaced while surrounded by the calcite matrix. It is possible that these
bones suffered a less severe version of the diagenetic alterations described in Brazilian
Triassic fossils (Holz and Schultz, 1998). Holz and Schultz (1998) suggested that the
swelling and deformation observed in their studied fossil bones resulted from the
displacive growth of calcite crystals. This process was probably fostered by the rapid
calcite precipitation in a marked seasonal arid climate during early diagenesis when
lithostatic pressure was still low (Watts, 1978; Holz and Schultz, 1998). Although the
occurrence of displacive calcite caused by the force of crystallization has been broadly
discussed in the geological literature (e.g., Watts, 1978; Buczynski and Chafetz, 1987;
Monger and Daugherty, 1991; Meng et al., 2018; Su et al., 2022), its effect in bone/tooth
diagenesis has been poorly explored (Holz and Schultz, 1998; Goldberg and Garcia, 2000;
Pérez et al., 2022).

The detection of siderite in some fossil samples is intriguing as it can be
interpreted as relict evidence of the initial dysoxic to anoxic and relatively reducing
conditions imposed by organic decay in early diagenesis (Wings, 2004). Siderite
precipitation commonly occurs in environments with low redox potential, slightly
alkaline pH, and a high concentration of iron (Clarke and Barker, 1993; Farlow and
Argast, 2006), potentially mediated by iron and sulfate-reducing bacteria (Mortimer et
al., 1997; Lim et al., 2004; Lin et al., 2020). The subsequent increase in alkalinity might
have favored the precipitation of calcite instead of siderite (Roberts et al., 2013), while

exposure to oxidizing conditions might be responsible for the overall dissolution of
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siderite, which was probably reprecipitated as iron oxide (Senkayi et al., 1986; Bao et al.,
1998; Loope et al., 2012).

While the exact pathways and timing (e.g., early vs. late diagenesis) for the
permineralization process in the fossils need to be further investigated, the detected
mineral infills are consistent with prevailing alkaline and oxidizing pore waters under the

influence of intense evaporation and/or water table fluctuations.

4.3 Raman micro-spectroscopy: possible organic peaks and enigmatic compounds

Although we obtained peaks in the 800-1500 cm! interval suggestive of organic
compounds, they are generally poorly defined with low relative intensity and/or are
associated with possible luminescence effects (Fig. SA). Therefore, in the absence of
more detailed and independent molecular analyses, the presence of organic compounds
in the analyzed fossils is not assumed.

The very intense and broad peaks occurring in the 1000-1800 cm™! region in the
spectra of P. sera (LPRP/USP 0050, vertebra) and the dentine of an isolated fossil tooth
(LPRP/USP 0794) represent still enigmatic compounds (Fig. 7). They are located in the
Raman region where some known organic bands of bone and teeth appear, but differ in
terms of intensity, position, and width. Similar bands have been found in fossils from
different locations and ages (Yang and Wang, 2007; Piga et al., 2011; Marshall et al.,
2012; Barros et al., 2019; Wang et al., 2020; Korneisel et al., 2021; JuraSekova et al.,
2022; Sanchez-Pastor et al., 2024; Sousa et al., 2024). Marshall et al. (2012) studied the
body parts and gut nodules of Cambrian arthropods from the USA and found that the
body parts contained D and G bands of carbonaceous material. The gut nodules, however,
showed similar intense bands between 1000-1800 cm™> which were attributed to large-

ring clusters of polycyclic aromatic hydrocarbons (PAHs). PAHs are stable products of
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the geochemical maturation of organic compounds that can become progressively
carbonized and graphitized, being ultimately transformed into graphite (e.g., Durand,
1980; Wopenka and Pasteris, 1993; Schopf et al., 2005). Nevertheless, the enigmatic
peaks do not closely match those of carbonaceous D and G bands (Fig. 7), nor those of
published PAHs in Raman spectra (Chen et al., 2014; Cloutis et al., 2016; Jurasekova et
al., 2022).

An alternative interpretation has been proposed by Korneisel et al. (2021) based
on the chemical composition of secondarily-infilled vascular canals in a bone of a
Cretaceous theropod from China. EDS and TOF-SIMS results demonstrated that a
mixture of clay minerals and carbonaceous compounds filled these vascular canals. The
peaks in the 10001800 cm™! region were considered photoluminescent bands generated
by rare earth elements related to the fossil bone apatite.

Jurasekova et al. (2022) suggested that the unknown bands have features that
could be consistent with both inorganic and organic compounds. While the authors do not
entirely reject PAHs or a mixture of clay minerals and carbonaceous compounds as
possible identifications, they suggest that the bands are most probably associated with a
highly transformed carbonate-rich compound. Similar bands have been recently described
in Pleistocene vertebrate fossils from Brazil and interpreted as organic compounds related
to fossilized biofilm (Sousa et al., 2024). Notably, however, neither JuraSekova et al.
(2022) nor Sousa et al. (2024) explicitly address the hypothesis that these bands might
represent photoluminescent bands created by REEs in apatite, as similarly observed in
geological and synthetic apatites (Culka and Jehlicka, 2018; Fau et al., 2022; Fig. 7). The
observed bands closely resemble the fluorescence pattern in minerals naturally enriched
or intentionally doped with Nd*" ions (Chen and Stimets, 2014; Fau et al., 2022). Similar

signals have also been reported in bones subjected to in vitro aqueous experiments, where
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they were associated with the absorption of Nd** ions in apatite (Kral et al., 2022). It is
evident that the interpretation of the enigmatic bands as organic compounds remains
uncertain. Further chemical analyses using complementary techniques (e.g., LA-ICPMS,

TOF-SIMS, immunoassays) would help clarify this issue.

4.4 Wider implications for fossil bioapatite studies

The chemical composition of fossil bioapatite has been used as a proxy for a wide
range of past reconstructions, including environmental, ecological, and chronological
aspects of fossil specimens (e.g., Kohn and Cerling, 2002; Trueman and Tuross, 2002;
Fricke, 2007; Trueman and Moore, 2007; Koch, 2007; Tiitken et al., 2011; Cullen et al.,
2022; Martin et al., 2022; Klock et al., 2022). Because diagenetic alterations can overprint
signatures of interest (e.g., Kolodny et al., 1996; Trueman et al., 2003; Lécuyer et al.,
2003; Tiitken and Vennemann, 2011; Suarez and Kohn, 2020), several methodologies
have been proposed to assess the degree of modification of fossil bioapatite and to
evaluate the reliability of chemical results (e.g., Kolodny et al., 1996; Thomas et al., 2007,
Thomas et al., 2011; Tiitken and Vennemann, 2011).

Thomas et al. (2007, 2011) have demonstrated that Raman spectroscopy can be
promising for verifying diagenetic changes in bioapatite and determining if original
isotopic compositions are significantly shifted. For instance, based on phosphate-oxygen
isotopes (8'*0p) of paired enamel and dentine samples from a broad selection of fossils,
Thomas et al. (2011) defined an alteration field based on v1(PO4) spectral parameters
where the diagenetic alteration was enough to change the original oxygen isotope
composition significantly. The only analyzed fossil enamel in this study has a mean
v1(PO4) peak position of 963.7 cm ™' and a FWHM of 11.1 cm ™!, which falls outside the

proposed diagenetic alteration field (Fig. 6). The mean v1(PO4) peak position of fossil
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bones is higher (964.5 cm™') and reinforces the idea that bone apatite is more susceptible
to diagenetic modifications than enamel apatite due to its structural properties, making it
less preferable for isotopic analyses (Lee-Thorp and van der Merwe, 1991; Ayliffe et al.,
1994; Kohn et al., 1999; King et al., 2011; Kendall et al., 2018). Nevertheless, the utility
of the alteration field proposed by Thomas et al. (2011) to pre-screen samples would
benefit from the inclusion of additional samples with a wider variety of diagenetic

histories.

5. Conclusions

Diagenetic features of fossil crocodyliforms from the Adamantina Formation
were investigated using SEM-EDS, XRF, XRD, and micro-Raman spectroscopy. We
have shown that the fossilization of bones and teeth involved significant compositional
and structural changes, such as the overall loss of organic matrix, permineralization of
voids, substitutions by different ions, and recrystallization. The transformation of the
bioapatite (carbonated hydroxyapatite) into carbonated fluorapatite in all studied samples
reinforces the importance of the establishment of a more thermodynamically stable
mineral phase for the survival of skeletal remains over geological time scales. Authigenic
void-filling minerals are consistent with significant interactions with alkaline and
oxidizing pore waters under an arid to semi-arid environment. However, the occurrence
of displacive calcite and evidence for “relict” siderite in some specimens point to a higher
complexity in the interaction of bones and teeth with diagenetic fluids. The Adamantina
Formation fossil specimens also display different Raman spectral signals consistent with
different modes of diagenetic alteration and effects on crystallinity. Some spectral values
suggest intense recrystallization that might have modified the element's isotopic

compositions. Nevertheless, results for the enamel of a fossil tooth presented good
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preservation indicators, supporting the potential of this type of tissue to retain biogenic
signals. The combination of techniques applied in this study provided a comprehensive
understanding of the diagenetic modifications of crocodyliform skeletal elements, which
can potentially inform sampling strategies for more costly and time-consuming analyses

(e.g., molecular tests and isotopic studies).
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Figure Captions

Figure 1. Geological map of the Bauru Basin in the states of Sdo Paulo and Minas
Gerais, showing the localities where the specimens analyzed in this study were
collected. 1, Furnas Farm, Jales; 2, General Salgado; 3, Km-34, Auriflama; 4, Ibird; 5,
Inhatimas-Arantes Farm, Gurinhata; 6, Marilia. Modified from Fernandes and Coimbra

(2000) and Menegazzo et al. (2016).

Figure 2. XRF results (logl0-transformed counts) of selected elements in fossil, rock,
and modern samples. Modern and fossil samples include bone, enamel, and dentine. A

synthetic bone standard (std) was also analyzed for comparison.

Figure 3. Representative BSE/SEM image and EDS elemental maps obtained from a
transverse polished section of a rib (LPRP/USP 0697). Elemental maps show the
widespread presence of Ca, P, and O in the bone sample, which reflects the composition

of fluorapatite. Some voids are filled by Mn, Ce, and Fe-bearing minerals and calcite.

Figure 4. SEM-BSE images and EDS elemental maps show bone breakage and
displacement, presumably caused by calcite growth. A. Osteoderm from LPRP/USP

0786. B. Osteoderm from LPRP/USP 0791. C. Vertebra from LPRP/USP 0050.

Figure 5. Raman spectra from a modern crocodylian and fossil crocodyliforms showing
the main inorganic and organic bands in the 200-1800 cm™ (A) and 2500-3400 cm™ (B)
ranges. Spectra are vertically offset for clarity. Raman bands are indicated with
asterisks; red asterisks denote peaks in fossil skeletal elements that occur within organic

band locations.

Figure 6. Relationship between width (FWHM) and position of the vi(PO4) band for

different apatite samples. The grey area corresponds to an alteration field defined by
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Thomas et al. (2011), where diagenetic modification probably changed original isotopic

compositions. FWHM = Full Width at Half Maximum height. FAp = Fluorapatite.

Figure 7. Raman spectra exhibiting bands of still unknown origin (marked with
asterisks) in P. sera fossil bone (LPRP/USP 0050) and fossil dentine from an
unidentified crocodyliform (LPRP/USP 0794). G-band and D-band of graphite (from
the RRUFF database), the organic bands of a modern crocodylian bone, and the
fluorescence bands of a mineral apatite (see Culka and Jehli¢ka, 2018) are also shown in

the figure.

Figure 8. Simplified overview of diagenetic processes involved in the preservation of
the studied crocodyliforms at the micro- and nanoscale. A. The organic components of
bone in living individuals include cells, a fibrous proteinaceous matrix, and a network
of blood vessels and nervous fibers. B. After death, the decomposition of the organic
matter creates voids within the bone tissue. C. Infiltration of fluids with mobile ions
leads to the precipitation of oxides (Fe-, Mn-, and possibly Ce-bearing minerals) and
carbonates (calcite and siderite) inside empty cavities. D. At the microscale, bioapatite
is interwoven with organic matter. E. The degradation of protective organics opens pore
spaces and exposes the bioapatite crystals to diagenetic fluids. F. Substitutions occur at
every site of the bioapatite unit cell (Ca**, PO4>", OH’). Particularly important is the
substitution of F~ at the OH" site, which contracts the unit cell and favors the
precipitation of new apatite phases with larger crystal sizes, ultimately reducing bone
porosity. Images in A, B, and C were partially drawn based on an image from Servier
Medical Art. D was redrawn and modified from Keenan (2016). The crystal structure in

E was redrawn and modified from Matsunaga et al. (2010).



Table 1. Summary of the samples analyzed in this study. Abbreviations: XRF, energy-
dispersive X-ray fluorescence; SEM-EDS, scanning electron microscopy coupled with energy-

dispersive X-ray spectroscopy; MRS, micro-Raman spectroscopy; XRD, X-ray diffraction.

Specimen Taxon Locality Sample Methods
LPRP/USP 0697 Aphaurosuchus Furnas Farm, Jales Osteoderm 1 SEM-EDS; XRF; XRD;
escharafacies MRS
LPRP/USP 0697 Aphaurosuchus Furnas Farm, Jales Osteoderm 2 SEM-EDS
escharafacies
LPRP/USP 0697 Aphaurosuchus Furnas Farm, Jales Rib SEM-EDS
escharafacies
LPRP/USP 0697 Aphaurosuchus Furnas Farm, Jales Tooth SEM-EDS
escharafacies
LPRP/USP 0697 Aphaurosuchus Furnas Farm, Jales Sediment SEM-EDS; XRF; XRD;
escharafacies MRS
LPRP/USP 0229a Aplestosuchus Buriti Farm, General Osteoderm 1 SEM-EDS; XRF; XRD;
sordidus Salgado MRS
LPRP/USP 0229a Aplestosuchus Buriti Farm, General Osteoderm 2 SEM-EDS
sordidus Salgado
LPRP/USP 0229a Aplestosuchus Buriti Farm, General Rib SEM-EDS
sordidus Salgado
LPRP/USP 0229a Aplestosuchus Buriti Farm, General Sediment XRF; XRD; MRS
sordidus Salgado
LPRP/USP 0786 Baurusuchidae Buriti Farm, General Osteoderm SEM-EDS; XRF; XRD;
Salgado MRS
LPRP/USP 0786 Baurusuchidae Buriti Farm, General Long bone 1 SEM-EDS
Salgado
LPRP/USP 0786 Baurusuchidae Buriti Farm, General Long bone 2 SEM-EDS
Salgado
LPRP/USP 0786 Baurusuchidae Buriti Farm, General Weathered bone SEM-EDS
Salgado
LPRP/USP 0786 Baurusuchidae Buriti Farm, General Sediment SEM-EDS; XRF; XRD;
Salgado MRS
LPRP/USP 0791 Baurusuchidae General Salgado Osteoderm SEM-EDS
LPRP/USP 0642 Crocodyliformes General Salgado Osteoderm SEM-EDS
LPRP/USP 0794 Crocodyliformes Auriflama region Tooth SEM-EDS; XRF; XRD;
MRS
LPRP/USP 0794 Crocodyliformes Auriflama region Sediment XRF; XRD; MRS
MPPC SN Crocodyliformes Ibira region Tooth 1 SEM-EDS; XRF; XRD
MPPC SN Crocodyliformes Ibira region Tooth 2 SEM-EDS; XRF
LPRP/USP 0049A Pissarrachampsa Inhaumas-Arantes Farm, Rib SEM-EDS; MRS
sera Gurinhatd
LPRP/USP 0049A Pissarrachampsa Inhatimas-Arantes Farm, Osteoderm SEM-EDS
sera Gurinhata
LPRP/USP 0049A Pissarrachampsa Inhaumas-Arantes Farm, Sediment SEM-EDS
sera Gurinhatd
LPRP/USP 0049B Pissarrachampsa Inhatimas-Arantes Farm, Long bone 1 SEM-EDS
sera Gurinhata
LPRP/USP 0049B Pissarrachampsa Inhaumas-Arantes Farm, Long bone 2 SEM-EDS
sera Gurinhatd
LPRP/USP 0049B Pissarrachampsa Inhatimas-Arantes Farm, Sediment SEM-EDS
sera Gurinhata
LPRP/USP 0050 Pissarrachampsa Inhatmas-Arantes Farm, Vertebra SEM-EDS; XRF; XRD;
sera Gurinhatd MRS
LPRP/USP 0050 Pissarrachampsa Inhatmas-Arantes Farm, Sediment SEM-EDS; XRF; XRD;
sera Gurinhata MRS
LPRP/USP 0740 (ex Pissarrachampsa Inhaumas-Arantes Farm, Phalanx SEM-EDS

L0065)

sera

Gurinhata



LPRP/USP SN Mariliasuchus sp. Marilia region Osteoderm SEM-EDS; XRF; XRD;

MRS
LPRP/USP SN Mariliasuchus sp. Marilia region Femur SEM-EDS
LPRP/USP SN Mariliasuchus sp. Marilia region Sediment SEM-EDS; XRF; XRD;

MRS



Table 2. Raman band assignments for skeletal tissues, host rock matrix and infill material.

Material Type Assignment Raman shift/ cm?  References
v2(PO4) ~430 Penel et al. (1998); Morris and Finney (2004)
v4(POy) ~584 Penel et al. (1998); Morris and Finney (2004)
Proline 851-857 Morris ad Finney (2004); Alebrahim et al.
(2014), Khalid et al. (2018), Bérzins et al. (2019)
vi(POy) 959-962 Penel et al. (1998); Morris ad Finney (2004);
Berzins et al. (2019); Shah (2020)
Skeletal Tissue Phenylalanine ~1003 Penel et al. (2005)
vi(CO3) B-type 1070-1072 Penel et al. (1998); Morris and Finney (2004);
Shah (2020)
Amide III 1230-1250 Penel et al. (1998); Wiemann et al. (2018)
C-H bending 1447-1452 Penel et al. (1998); Morris and Finney (2004)
Amide | 1650-1690 Penel et al. (1998); Wiemann et al. (2018)
C-H stretching 2800-3060 Penel et al. (1998); Halcrow et al. (2014)
Hematite 227, 293, 411, Chukanov and Vigasina (2020)
497, 612
Quartz 263, 354, 463 Chukanov and Vigasina (2020)
) K-feldspar 282,475,513 Freeman et al. (2008)
Matrix and Infill
Calcite 283,713, 1086 Chukanov and Vigasina (2020)
Plagioclase 480, 509 Freeman et al. (2008)
Pyroxene (Diopside- 665, 1011 Huang et al. (2000)

hedenbergite series)



Figure 8. Simplified overview of diagenetic processes involved in the preservation of the studied
crocodyliforms at the micro- and nanoscale. A. The organic components of bone in living
individuals include cells, a fibrous proteinaceous matrix, and a network of blood vessels and
nervous fibers. B. After death, the decomposition of the organic matter creates voids within the
bone tissue. C. Infiltration of fluids with mobile ions leads to the precipitation of oxides (Fe-,
Mn-, and possibly Ce-bearing minerals) and carbonates (calcite and siderite) inside empty
cavities. D. At the microscale, bioapatite is interwoven with organic matter. E. The degradation
of protective organics opens pore spaces and exposes the bioapatite crystals to diagenetic fluids.
F. Substitutions occur at every site of the bioapatite unit cell (Ca*’, PO4*", OH"). Particularly
important is the substitution of F~ at the OH site, which contracts the unit cell and favors the
precipitation of new apatite phases with larger crystal sizes, ultimately reducing bone porosity.
Images in A, B, and C were partially drawn based on an image from Servier Medical Art. D was
redrawn and modified from Keenan (2016). The crystal structure in E was redrawn and modified

from Matsunaga et al. (2010).
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