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ABSTRACT 31 

The Bauru Group (Campanian–Maastrichtian) has one of the richest fossil 32 

records of Cretaceous in South America. All dinosaur fossils from this unit were 33 

assigned to Saurischia, most of them poorly preserved. We present the 34 

histological and taphonomic analysis of a dinosaur dorsal rib fragment from the 35 

Marília Formation in the western state of Minas Gerais. Thin sections were 36 

prepared to describe the microstructures of the bone tissue and the fossilization 37 

processes involved in preserving the specimen. An elemental analysis was also 38 

performed to verify the chemical composition of the fossil and rock matrix. 39 

Haversian bone was identified in the rib cortex, and no growth marks or an 40 

external fundamental system were found. The rib probably belonged to a 41 

saurischian dinosaur because of its plank shape and elliptical cross-section. 42 

Hypotheses regarding taphonomic processes were inferred. An extended period 43 

of subaerial exposure, followed by high-energy transport, was interpreted due to 44 

extensive fractures and signs of abrasion on the outer surface of the bone. Pyrite 45 

pseudomorphs (framboids) indicate that the bone was deposited in a reductive 46 

environment. After burial, the rapid precipitation of calcite and alkaline stability 47 

allowed the preservation of apatite during the recrystallization phase. The 48 

manganese hydroxides were deposited on apatite crystals during early 49 

diagenesis. We concluded that the fossil rib presented a common taphonomic 50 

bias identified among vertebrate fossils of the Bauru Group, which is associated 51 

with the exposure of the bones to arid and semiarid climates, their transport into 52 

the depositional environments and pedogenetic influence during fossil 53 

diagenesis. 54 

 55 
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 58 

1. INTRODUCTION 59 

The Bauru Group is one of the richest sites for paleo-vertebrates from the 60 

Cretaceous of South America (Brusatte et al., 2017; Candeiro et al., 2020; Geroto 61 

and Bertini, 2014; Langer et al., 2022; Martinelli and Teixeira, 2015). Its dinosaur 62 

fossil records are restricted to saurischians, represented by theropods and 63 

sauropods, the last of which is exclusively composed of titanosaurs, with 11 64 

recognized species (Faria et al., 2015; Navarro et al., 2022; Silva Junior et al., 65 

2022). For theropods, only three species have been described: the abelisaurids 66 

Thanos simonattoi Delcourt and Iori, 2020 and Kurupi itaata Iori et al., 2021, and 67 

the unenlagiine maniraptoran Ypupiara lopai Brum et al., 2021b. However, most 68 

of the dinosaur fossils in the Bauru Group are isolated or disarticulated bone 69 

fragments (Candeiro et al., 2019; Cavalcanti et al., 2021; Delcourt and Langer, 70 

2022; Silva Junior et al., 2017) and numerous theropod teeth (Candeiro et al., 71 

2017; Delcourt et al., 2020; Tavares et al., 2014). Despite the poor preservation 72 

of diagnostic characteristics, fossils contain relevant paleoecological information, 73 

such as signs of predation (Reis et al., 2023), saprophagous organism activities 74 

(Paes Neto et al., 2018), and illnesses and parasite-host relationships (Aureliano 75 

et al., 2021b). 76 

Paleohistological studies have contributed to a considerable number of 77 

recent discoveries involving the ontogeny, phylogeny, biomechanics, and 78 

paleoenvironment of dinosaurs and other extinct organisms (Bailleul et al., 2019; 79 

Chinsamy, 2023; Padian, 2013). Based on petrography and histology, 80 

paleohistological techniques include preparing, cutting, and mounting fossils on 81 

thin sections to analyze microscopic structures preserved inside bones, tendons, 82 
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eggshells, or other tissues (Lamm, 2007). Paleohistological analyses have been 83 

applied to study Brazilian dinosaur records covering several fields of research; 84 

for instance, ontogenetic identification (Ghilardi et al., 2016; Sayão et al., 2020; 85 

Souza et al., 2020), description of osteohistological structures, and 86 

paleopathology (Aureliano et al., 2021b, 2021a; Barbosa et al., 2016; Brum et al., 87 

2021a). 88 

Paleohistological techniques can provide insight into the taphonomy of a 89 

fossil. Bone structure and tissues can preserve evidence of pre-burial processes 90 

such as decomposing organisms (Kremer et al., 2012; Owocki et al., 2016) and 91 

bone exposure (Pfretzschner and Tütken, 2011; Previtera, 2019, 2017). 92 

Additionally, minerals deposited within the internal spaces of bones can indicate 93 

sub-surface conditions that favored fossil diagenesis and its changes over time 94 

(Clarke, 2004). Authigenic minerals provide information about the depositional 95 

paleoenvironment, such as oxidation levels and pH, when analyzed for their 96 

composition (Wings, 2004). They are also useful for comparing diagenetic 97 

processes in different formations (Rogers et al., 2020). 98 

However, taphonomic studies of vertebrate fossils from the Bauru Group 99 

(Upper Cretaceous) are rare and have only been applied to a few tetrapod groups 100 

such as crocodylomorphs (Araújo Júnior and Marinho, 2013; Vasconcellos and 101 

Carvalho, 2006) and testudines (Bertini et al., 2006). Studies comparing the 102 

modes of preservation of different taxa are even rarer (Azevedo et al., 2013; 103 

Bandeira et al., 2018). Regarding fossil diagenetic patterns, Garcia et al. (2005) 104 

proposed a general model for bone microstructure preservation in the Uberaba, 105 

Adamantina, and Marília formations. In recent years, only three studies on the 106 

fossil diagenesis of bones in the Bauru Group have been published. The research 107 
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of Marchetti et al. (2019) examined specimens of the crocodylomorph 108 

Montealtosuchus arrudacamposi Carvalho et al., 2007, from the Adamantina 109 

Formation. Pinto et al. (2020) conducted a geochemical analysis of turtle bone 110 

fragments collected from the outcrops of the Presidente Prudente Formation, 111 

which is equivalent to part of the Adamantina Formation (Fernandes and 112 

Coimbra, 2000), in Pirapozinho, São Paulo, Brazil. Both studies concluded that 113 

bone preservation was facilitated by the recrystallization of apatite during early 114 

diagenesis, a process that may have been promoted by groundwater saturated 115 

with carbonates and fluorine (Marchetti et al., 2019; Pinto et al., 2020). In a 116 

histological study of titanosaur vertebrae from the Marília Formation, Aureliano et 117 

al. (2020) suggested that diagenetic scenarios played an essential role in 118 

preserving bone tissue (pneumosteum). 119 

This study aimed to improve our understanding of the paleoenvironment 120 

of the Bauru Group (Upper Cretaceous) and the fossil diagenesis of its dinosaur 121 

bones through the histotaphonomic characterization of the fossil rib fragment 122 

CP2/200A-B from the Marília Formation. The specimen was found in the western 123 

part of Minas Gerais, known as the Triângulo Mineiro region, and was interpreted 124 

as belonging to an indeterminate saurischian dinosaur. 125 

 126 

1.1. Geological Context 127 

The Bauru Basin consists of an intracratonic depression that sustained 128 

the deposition of an inland continental sedimentary sequence after separating the 129 

South American Plate from the Gondwana continent (Fernandes and Coimbra, 130 

2000; Menegazzo et al., 2016). This basin covers an area of approximately 131 

379,000 km², is located almost exclusively in Brazil, and occupies the western 132 
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region of São Paulo and Minas Gerais states, Southern Goiás, Eastern Mato 133 

Grosso do Sul, and the Northwest of Paraná state (Fernandes and Coimbra, 134 

2000; Menegazzo et al., 2016). The Bauru Basin is Aptian–Maastrichtian and is 135 

composed of sandstones and sandy mudstone deposits at the bottom and 136 

sandstones and conglomerates at the top (Batezelli, 2017). The Bauru Basin is 137 

subdivided into Caiuá and Bauru groups (Fernandes and Coimbra, 2000). The 138 

Bauru Group (Campanian–Maastrichtian) is represented by the Araçatuba, 139 

Adamantina, Uberaba, and Marília formations (Batezelli, 2017; Batezelli and 140 

Ladeira, 2016; Castro et al., 2018), as well as the Serra da Galga Formation, 141 

proposed based on recent studies carried out on the former Serra da Galga 142 

Member of the Marília Formation (Soares et al., 2021). 143 

The fossil fragment (CP2/200A-B) was collected from an outcrop of the 144 

Marília Formation located at kilometer 159 of the BR 364 highway (Figure 1) 145 

between Campina Verde and Gurinhatã, in Minas Gerais, Brazil. The 146 

stratigraphic unit is characterized by sandstones, conglomerates, and paleosols 147 

cemented by calcium carbonate and silica, which comprise the fluvial facies 148 

(Batezelli, 2017). Batezelli et al. (2019) analyzed outcrops of the Bauru Group in 149 

the Triângulo Mineiro region and identified them as part of the facies association 150 

called Campina Verde paleosol sequence (Figure 1). According to the authors, 151 

the deposits that were formed in an environment composed of ephemeral rivers, 152 

eolian dunes, and paleosols correspond to the medial portion of the distributive 153 

and progradational fluvial system of the northeastern region of the Bauru Group. 154 

The prospective stratum of the fossil is characterized as a Ck (Figure 1) horizon 155 

paleosol (inceptisol/entisol) developed under the influence of a semiarid climate 156 

Batezelli et al. (2019). 157 
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 158 

 159 

2. MATERIALS AND METHODS 160 

The fossil rib fragment is housed in the Scientific Collection of Vertebrate 161 

Paleontology (CP2) at the Instituto de Geociências (IG), Universidade Estadual 162 

de Campinas (UNICAMP), under the collection number CP2/200A-B. The 163 

specimen measured approximately 50 mm in proximodistal length, 60 mm in 164 

anteroposterior width, and 27 mm in mediolateral height in cross-section prior to 165 

sectioning (Figure 2). Partial erosion exposed a portion of the medullary 166 

spongiosa on one of the dorsal rib surfaces (Figure 2). 167 

 168 

2.1. Petrographic and Elemental Analyses 169 

The rib fragment was cross-sectioned, and two petrographic thin sections 170 

were produced according to standard paleohistological techniques (Chinsamy 171 

and Raath, 1992; Lamm, 2013). For a more detailed analysis of the rock matrix, 172 

the petrographic slides were polished to a thickness of 30 µm (Marchetti, 2017). 173 

The samples were analyzed at the Laboratory of Paleohydrogeology at 174 

UNICAMP using a Carl Zeiss Scope A1 ZEISS petrographic microscope under 175 

normal and cross-polarized light using a gypsum compensator. A ZEISS 176 

AxioCam camera captured images, and the microscope software Zenlite from 177 

ZEISS Microscopy was used to visualize and treat the images. The thin section 178 

received carbon coverage, and elemental analysis was performed using an LEO 179 

430i model Scanning Electron Microscope (SEM) equipped with an energy 180 

dispersive detector (EDS) manufactured by Oxford Instruments. The SEM was 181 
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operated at 67 eV in vacuum mode at the Laboratory of Mineral Quantification at 182 

the Instituto de Geociências at UNICAMP. 183 

 184 

2.2. Paleohistological Analysis 185 

Histological descriptions of the sections were performed according to the 186 

standard nomenclature of microstructures and classifications of bone tissues, as 187 

grouped by de Buffrénil and Quilhac (2021). Considering the fossil bone to be a 188 

fragment of a dorsal rib, our interpretation of the ontogenetic stage of the 189 

specimen was based on current models and hypotheses regarding the growth 190 

and development of this type of bone in sauropod dinosaurs (Brum et al., 2022; 191 

Gallina, 2012; Waskow and Sander, 2014). In addition, three histological 192 

parameters for ontogenetic analysis developed by Mitchell and Sander (2014) 193 

were used: (i) the apposition front (AF), which represents the deposition of 194 

primary bone tissue on the periosteal surface; (ii) the Haversian substitution front 195 

(HSF), which indicates the deposition of secondary osteons; and (iii) the 196 

resorption front (RF), which characterizes the resorption of bone tissue and 197 

expansion of the medullary cavity. 198 

 199 

 200 

3. RESULTS 201 

 202 

3.1. Taxonomy 203 

Based on its flattened shape, the fossil was first compared with published 204 

data on other rib specimens found in the Marília Formation and correlated 205 

geological units of the Bauru Group (e.g. Baiano and Cerda, 2023; Bertini et al., 206 
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2001; Coria et al., 2013; O’Connor, 2007; Santucci and Arruda-Campos, 2011; 207 

Silva Junior et al., 2022; Silva Junior et al., 2019). For example, the sauropod rib 208 

specimens reported by Bertini et al. (2001) were similar in size to those studied 209 

in the present study. In the appendix of the publication, the authors describe up 210 

to 44 rib fragments assigned to Titanosauria that were found in an outcrop of the 211 

Marília Formation (Echaporã Member) in Monte Alto, São Paulo. The specimens 212 

are stored in the collection of the Museu de Paleontologia 'Professor Antônio 213 

Celso de Arruda-Campos' (MPMA) located in Monte Alto. Among these fossils, 214 

four ribs (MPMA-04) were 932 mm long and 55.5 mm average wide. Six other rib 215 

fragments (MPMA-06) listed in this article were 48 and 80 mm wide. By 216 

comparing the measurements with the CP2/200A-B specimen, the width 217 

corresponded to the average size observed in previous studies. 218 

The fossil morphology presented in this study places it in a more inclusive 219 

group. Wilson (2002) proposed the anterior dorsal ribs with a plank-like shape, 220 

whose anteroposterior width was three times larger than their mediolateral length, 221 

as a synapomorphy of Titanosauriformes. Fossil rib CP2/200A-B had 222 

approximate measurements of 60 and 27 mm for these parameters. The 223 

morphology of the fragment is like that described for the dorsal rib shafts of 224 

Overosaurus paradasorum (Coria et al., 2013) of the Anacleto Formation 225 

(Campanian) in Argentina (Garrido, 2010). O. paradasorum has an elliptical or 226 

lateromedially flattened shape, in cross-section, of the distal shaft of both the third 227 

and fourth pairs of anterior ribs, and the posterior dorsal ribs. The maximum 228 

anteroposterior width determined for O. paradasorum dorsal ribs is also like 229 

CP2/200A-B with sizes ranging from 70 mm (third rib pair), 65 mm (first right rib), 230 

and 55 mm (fourth rib pair) (Coria et al., 2013). 231 
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Compatibility with a large South American theropod dinosaur was 232 

determined by comparing the ribs identified and described in the literature. 233 

Abelisaur dorsal ribs commonly have an anterior intercostal ridge (Filippi et al., 234 

2018; Méndez et al., 2022; O’Connor, 2007), but this structure was absent in the 235 

CP2/200A-B fossil. The distal shafts of the second and third dorsal ribs of 236 

Majungasaurus crenatissimus (Depéret, 1896) (see O’Connor, 2007) and the 237 

distal sections of the dorsal ribs of Aucasaurus garridoi Coria et al., 2002 (see 238 

Baiano and Cerda, 2023) exhibited a mediolaterally flattened shape in the cross-239 

section, which is like the titanosaur specimens mentioned earlier here. These 240 

features are conflicting and insufficient to assign the bone fragment CP2/200A-B 241 

to abelisaurs or titanosaurs with conviction. Megaraptors, another group of 242 

carnivorous dinosaurs, have posterior and anterior intercostal ridges, as well as 243 

intercostal grooves on their dorsal rib shafts (Aranciaga Rolando et al., 2022; 244 

Lamanna et al., 2020; Porfiri et al., 2014). Neither of these features was identified 245 

in the fossil CP2/200A-B. Therefore, the hypothesis that the specimen belonged 246 

to a megaraptorid theropod was rejected. 247 

 248 

3.2. Histological analysis 249 

Regarding the composition of bone tissues in both thin sections, we 250 

identified a 6-mm-thick dense Haversian bone throughout the length of the rib 251 

cortex (Figures 3 and 4). Secondary osteons presented overlaps, indicating one 252 

or more generations of bone remodeling (Figures 3C and 4B). A large area of 253 

cancellous bone up to 10 mm thick was observed in the medullary region, with 254 

trabeculae and erosion cavities derived from bone reabsorption (Figures 3E and 255 
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4C). The same secondary osteonal structures were observed in the cortex on 256 

both sides of the rib. Lines of arrested growth (LAGs) are absent. 257 

On the outer surface of the cortex in the periosteal region, the osteons 258 

were severely damaged, part of them with half of their structures eroded (Figures 259 

3C and 4B). No external fundamental system (EFS) or associated lamellar tissue 260 

is preserved in this region of the compact bone. The endosteal region was poorly 261 

preserved, and several parts of the lamellar tissue were replaced by calcite. We 262 

also identified deep and wide fractures extending into the medullary cavity of the 263 

rib (Figure 3B and 3E), sometimes filled with a rock matrix or calcitic cement, 264 

forming veins. However, the mineralogical composition of the bone tissue was 265 

preserved, with a predominance of apatite [Ca5(PO4)3] in all areas, as predicted 266 

in the EDS analysis (see Supplementary Material). 267 

Some considerations were made regarding the possible stages of 268 

ontogenetic development of the specimen. According to recent proposals for the 269 

development of bone tissue in sauropod ribs, advanced HSF and RF limited to 270 

the perimedullary region suggest an adult or senescent individual (Brum et al., 271 

2022). However, no confident statement about the ontogeny can be made 272 

because of the absence of an EFS and the unknown position of the fragment in 273 

the length of the rib (see Discussion section). EFS represents the deceleration of 274 

bone deposition (AF). 275 

 276 

3.3. Petrographic analysis 277 

A calcitic matrix and cement characterized thin sections of the rib 278 

fragment (CP2/200A-B) in the medullary region and the outer surface of the bone 279 

as veins (Figures 3C, 3E and 4C). The internal spaces are mainly filled with 280 
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spathic calcite (~0.35 µm). On the surface of the rib trabeculae, a recrystallized 281 

calcite phase was identified under polarized light, with a slight fringe at the edges 282 

of the structures along their entire perimeters (Figures 3E and 5D). In addition, 283 

we observed deposits of opaque minerals inside the Haversian canals and 284 

osteocyte cavities. According to EDS analysis, the minerals correspond to iron 285 

oxides, which have a framboidal habit (see Supplementary Material) and 286 

constitute pyrite pseudomorphs. In addition, deposits of opaque minerals in a 287 

dendritic pattern were observed, percolating out of the vascular canal and 288 

covering the lamellae of secondary osteons (Figure 3D), consistent with 289 

manganese oxides. 290 

The sample was associated with calcitic cement sandstone, with poorly 291 

selected grains ranging from coarse sand (0.70 mm) to very fine sand (0.10 mm), 292 

although it was predominant in the fine sand fraction (0.19 mm). The larger grains 293 

(medium and coarse sand fractions) exhibited variable roundness ranging from 294 

sub-rounded to well-rounded. Smaller grains exhibited more angular shapes 295 

ranging from angular to subangular. The mineral grains are predominantly 296 

composed of quartz, plagioclase feldspar, and alkali feldspar (microcline and 297 

orthoclase) (Figure 5C and 5D). Under cross-polarized light, grains of 298 

monocrystalline quartz with straight and undulating extinction and polycrystalline 299 

quartz were observed (Figure 5A). Most polycrystalline or undulating extinction 300 

quartz grains occurred in the coarse and medium sand fractions, with little 301 

contribution from straight extinction quartz. However, the monocrystalline grains 302 

of straight extinction are limpid and concentrated mainly in finer particles. Overall, 303 

the minerals exhibited fractures and slightly corroded edges associated with 304 

calcite replacement (Figure 5B and 5D). 305 
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The two thin sections exhibited a few unique structures. On petrographic 306 

slide 234 (CP2/200A), a few unidentified grains of a brownish color and peloidal 307 

texture were found. However, on slide 235 (CP2/200B), a small number of grains 308 

configured a residual texture filled with calcite laths, which may have been 309 

associated with volcanic lithic fragments (Figure 5E and 5F). 310 

 311 

 312 

4. DISCUSSION 313 

 314 

4.1. Taxonomy and ontogeny 315 

The similarities in size between fossil CP2/200A-B and other titanosaur 316 

specimens described from the same geological unit (Bertini et al., 2001) along 317 

with the plank-like morphology of the rib (Wilson, 2002) and its elliptical shape in 318 

cross-section (Coria et al., 2013), suggest that the specimen may belong to the 319 

Titanosauria group. However, there are exceptions to dorsal rib morphology in 320 

some titanosaur species, including those found in the Bauru Group. For example, 321 

the recognized specimens of Uberabatitan ribeiroi Salgado and Carvalho, 2008 322 

(see Silva Junior et al., 2019), whose dorsal ribs present the medial part of the 323 

shaft slightly concave, and the holotype of Arrudatitan maximus (Santucci and 324 

Arruda-Campos, 2011) (Silva Junior et al., 2022), which has mid-thorax ribs with 325 

well-developed anterior and posterior ridges in the proximal shaft, acquiring a “D” 326 

shape in cross-section. Even the Overosaurus ribs used for comparison in this 327 

study present laminar projections on the posterior face of the proximal shaft of 328 

the second and third anterior dorsal ribs, which are considered diagnostic 329 

characteristics of the species (Coria et al., 2013). 330 
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A mediolaterally flattened shape may be identified in the ribs of other 331 

taxa, such as the distal shaft of the anterior dorsal ribs of the abelisaurid 332 

Majungasaurus (O’Connor, 2007). Degradation of one of the fragment’s faces 333 

during telodiagenesis precludes the identification of an anterior intercostal ridge, 334 

which is also present in abelisaurid theropods (Aranciaga Rolando et al., 2021; 335 

Filippi et al., 2018; Méndez et al., 2022; O’Connor, 2007). Histological 336 

comparison of the dorsal ribs was insufficient for decisive taxonomic classification 337 

because of similarities in bone tissue and microstructure, such as the thickness 338 

ratio of the medullary cavity and cortex, and advanced remodeling, which were 339 

found in both the dorsal ribs of Aucasaurus garridoi (Baiano and Cerda, 2023) 340 

and titanosaur species of the Bauru Group (Brum et al., 2022; Windholz et al., 341 

2023). Thus, owing to the high fragmentation of fossil CP2/200A-B and the 342 

absence of clear diagnostic characters attributed to abelisaurs, as exemplified 343 

above, we identified it as an indeterminate saurischian dinosaur from the Marilia 344 

Formation. 345 

To assess the ontogenetic stage of the organism, some characteristics 346 

of the studied sample were unable to be identified precisely, such as the absence 347 

of recognizable LAGs, growth rings, and EFS. The absence of the latter 348 

histological structure may be related to extensively damaged secondary osteons 349 

present on the surface of the cortex (Figures 3C and 4B), as discussed in the 350 

next section. Based on the current interpretations of rib bone development (Brum 351 

et al., 2022), we could only classify the organism as adult or senescent. However, 352 

the sampling location of the bone may have influenced the interpretation of the 353 

results. According to Waskow and Sander (2014), the posteromedial side of the 354 

proximal end of the rib shaft is the area with optimal growth record. The 355 
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proximodistal growth direction of bone justifies this characteristic during 356 

ontogeny, with resorption and secondary deposition induced by mechanical 357 

stress. It promotes intra-elemental histovariability with significant bone 358 

remodeling in more distal regions, reducing the number of recognizable growth 359 

rings at these sites (Gallina, 2012; Waskow and Sander, 2014). Since it is a 360 

fragment and its position in the rib length is possibly distal, remodeling may not 361 

represent an adult organism but a tissue adaptation to mechanical pressure 362 

applied at the distal and lateral ends of the bone. 363 

 364 

4.2. Taphonomy 365 

Based on the petrographic and histological characteristics of sample 366 

CP2/200A-B, we inferred the taphonomic processes recorded during its 367 

preservation. The presence of damage to the secondary osteons on the outer 368 

surface of the rib suggests that the bone was worn away during transport (Figures 369 

3C and 4B). This feature is attested by the calcitic cement in the rib medullary 370 

cavity, veins, and rock matrix as well as the presence of grains inside the larger 371 

cracks (Figure 3B and 3E). The occurrence of these fractures may be associated 372 

with the weathering of bones exposed to the ground surface under semiarid 373 

conditions (Behrensmeyer, 1978). Subaerial exposure for months or years before 374 

burial is a typical taphonomic pattern in vertebrate fossils of the Bauru Group 375 

because a considerable amount of material has been fragmented or isolated 376 

(Azevedo et al., 2013; Bandeira et al., 2018, 2016; Brum et al., 2021b; Delcourt 377 

and Iori, 2020). A reductive phase in the early diagenesis of the rib is indicated 378 

by iron oxides as pyrite pseudomorphs (framboids) near the Haversian canal 379 

surfaces (see Supplementary Material). Pyrite formation and precipitation 380 
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typically occur in reductive environments. Iron input is derived from the 381 

decomposition of organic substances, and sulfide availability is controlled by 382 

collagen hydrolysis and diffusion from external sources (Pfretzschner, 2001). 383 

Thus, the leaching of organic components increases the porosity of the bone 384 

structure, allowing recrystallization (Pfretzschner, 2001). This process ended in 385 

the early diagenesis phase, leaving the fossil barely permeable and resistant to 386 

diagenetic changes (Cazalbou et al., 2004). At this stage, the deposition of 387 

manganese hydroxides on apatite crystals (Figure 3D) may have occurred 388 

through groundwater activity (Pfretzschner, 2004; Pfretzschner and Tütken, 389 

2011). 390 

The characteristics identified in the rock matrix allowed us to reconstruct 391 

the palaeodepositional environment in which the final burial of the rib occurred. 392 

Framework grains of diverse sizes, degrees of roundness, and different quartz 393 

populations indicate that the paleoenvironment received sedimentary intake from 394 

distinct sources. This petrographic feature may be related to the development of 395 

the Bauru Basin during the Upper Cretaceous, which underwent a second phase 396 

of uplift in its eastern region due to alkaline intrusions from the mantle (Batezelli, 397 

2017; Batezelli et al., 2005; Mattos and Batezelli, 2020). Because most of these 398 

grains have more angular shapes, it is suggested that their sources were closer 399 

to the deposition site. 400 

We propose that the deposition of the dorsal rib was rapid in a high-401 

energy system owing to the poor selection of grains from the rock framework, 402 

both internally and externally, to the fossil bone. This refers to the 403 

palaeodepositional system of the Marília Formation, which is characterized as 404 

alluvial and dominated by progradational braided rivers with a high sediment 405 
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supply driven by constant avulsions and abandonment of distributive channels 406 

(Batezelli, 2017). The loose packing of Bauru Basin rocks is due to calcrete 407 

formation by pedogenetic and phreatic processes under semiarid and arid 408 

environmental conditions (Batezelli et al., 2005; da Silva et al., 2019; Fernandes, 409 

2010). Comparing the microstructure with the facies profiles from the Campina 410 

Verde site (Batezelli et al., 2019), we inferred that the rib (CP2/200A-B) was 411 

deposited in an ephemeral or intermittent channel bed with high sediment input 412 

and was later abandoned, providing the initial fast cementation of the stratum by 413 

phreatic processes over a long period of stability. During late diagenesis, an 414 

oxidation stage was noted that was associated with the deposition of opaque 415 

minerals on the outer surface of the bone, which were probably formed by the 416 

action of rainwater (Batezelli et al., 2005). The inferred taphonomic sequence for 417 

specimen CP2/200A-B is summarized in Figure 6. 418 

Our findings support the hypothesis that the rapid recrystallization of 419 

apatite during early diagenesis allows the preservation of bone structure, as 420 

suggested by other studies on fossil bones from the Bauru Group (Marchetti et 421 

al., 2019; Pinto et al., 2020). However, differences were observed in the 422 

petrographic patterns proposed by Garcia et al. (2005). The presence of 423 

crystalline calcite fringes on the bone surface is a feature observed in fossils from 424 

the Adamantina and Uberaba Formations and is also present in this specimen 425 

from the Marília Formation. To verify the proposed patterns, we recommend 426 

conducting additional petrographic comparisons between specimens from the 427 

Bauru Group formations. 428 

 429 

4.3.  Regional and interregional contexts 430 
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Specimen CP2/200A-B provides an example of bone preservation 431 

associated with calcrete pedogenesis in a semi-arid climate (Batezelli et al., 2019; 432 

da Silva et al., 2019). It can be used for comparison with other fossil bones found 433 

in similar depositional environments around the world. Evidence of bone 434 

weathering by surface exposure is present in sauropod fossils from the 435 

Hasandong Formation (Paik et al., 2001), Lower Cretaceous of the Korean 436 

Peninsula, and in sauropod and theropod fossils from the Neuquén Basin 437 

(Previtera, 2019, 2017), Upper Cretaceous of Argentinian Patagonia. These 438 

lithostratigraphic units probably indicate arid to semi-arid paleoclimates (Paik et 439 

al., 2001; Previtera, 2017), further supporting the correlation between climate and 440 

pre-burial weathering. In addition, pseudomorphic framboids composed of iron 441 

oxides have been discovered in dinosaur bones from the Two Medicine and 442 

Judith River formations of the Upper Cretaceous of North America (Rogers et al., 443 

2020), suggesting that pyrite precipitation occurred in a reducing environment 444 

during initial diagenesis. 445 

It is important to note that the preservation of vertebrate fossils, such as 446 

bones, eggs, and coprolites, associated with pedogenesis is common in 447 

Cretaceous records (e.g. Fiorillo et al., 2016; López-Martıńez et al., 2000; Paik et 448 

al., 2001; Therrien et al., 2009). Soils are the largest terrestrial environment, and 449 

their characteristics, such as pH and redox index, are important for the 450 

preservation of organic remains and the formation of fossils (Retallack, 2019). 451 

For example, calcareous soils are alkaline enough to prevent the dissolution of 452 

bones and shells (Retallack, 2019, 1988), favoring the preservation of the fossil 453 

rib discussed in this paper. The study of paleosols that contain fossil 454 

assemblages is relevant to vertebrate paleontology because it provides essential 455 
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information for paleoecological reconstruction and can reveal possible 456 

preservation biases (Retallack, 1988; Therrien et al., 2009). 457 

 458 

 459 

5. CONCLUSIONS 460 

The analyses on the rib fragment (CP2/200A-B) highlighted the presence 461 

of compact bone completely remodeled in the cortex and cancellous bone 462 

occupying the entire medullary region. 463 

Regarding taxonomic classification, the morphology of the fossil rib and 464 

similarities in size suggest its classification as an indeterminate saurischian 465 

dinosaur. 466 

The taphonomic processes associated with the fossil rib can be 467 

summarized as follows: (i) a long period of subaerial exposure of the bone, 468 

followed by high-energy transport; (ii) deposition of the specimen in a reductive 469 

environment with alkaline stability, recrystallization of apatite, and rapid 470 

precipitation of calcite in early diagenesis, reducing fossil porosity; and (iii) 471 

manganese hydroxides deposited on the apatite crystals by groundwater. 472 

Finally, the study concluded that the CP2/200A-B specimen presented a 473 

taphonomic bias identified among vertebrate fossils of the Bauru Group, which 474 

has been reported in previous studies. Isolated fragments and the loss of bone 475 

structure, even at the histological level, are recurrent signs in dinosaur 476 

specimens. These characteristics may be associated with the extensive exposure 477 

of bones to arid and semiarid climates, their transport into depositional 478 

environments and diagenesis associated with the development of soils. 479 

 480 
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FIGURE CAPTIONS 896 

 897 

Figure 1. Location of the outcrop in Brazil where the fossil studied was collected. 898 

A, extension of the Bauru Basin in the Brazilian territory and position of the 899 

outcrop in the Triângulo Mineiro region (stratigraphy based on Batezelli, 2017). 900 

B, and C, sampling site and the rib fragment position in the outcrop stratigraphic 901 

column (modified from on Batezelli, 2019). B, view of outcrop next to BR 364 902 

highway. B. layer in which the fossil was found (petrographic hammer for size 903 

reference = 30cm). 904 

 905 

Figure 2. Pictures of the rib fragment before (left side) and after (right side) 906 

cutting. A, and B, transverse view of the rib (CP2/200A), highlighting the eroded 907 

lateral region of the bone (arrow) and the rock matrix layer (arrow). C, and D, 908 

longitudinal view of the rib (CP2/200B), highlighting the eroded region (arrow) 909 

and a fine layer of rock (arrow) still covering to the fossil. Section CP2/200A is 910 

represented on the slide 234 and CP2/200B on the slide 235. Scale bars = 20mm. 911 

 912 

Figure 3. Petrography of the rib fragment of the sample CP2/200A (slide 234). A, 913 

panoramic view of transverse section, the arrow show point to the fine layer of 914 

residual rock on the side of the bone, natural light. B, secondary osteon at the 915 

edge of the cortex, with extensive fracture present on the right under natural light. 916 

C, Damaged second-generation osteon, arrow showing overlap, polarized light 917 

with gypsum compensator. D, osteon in natural light with the presence of 918 

dendrites in its lamellae, indicates by arrow. E, bone remodeling region with a 919 

large erosion cavity (white arrow), vein (black arrow) and replacement process of 920 
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bone tissue by calcite, natural light. Scale bar= 10mm in A; 500µm in B, C, E; 921 

250µm in D. C = calcite (sparite and micrite) 922 

 923 

Figure 4. Petrography of the rib fragment of the sample CP2/200B (slide 235). A, 924 

panoramic view of transverse section, the arrow show point to the fine layer of 925 

residual rock on the side of the bone, natural light. B, damaged secondary osteon 926 

observed under polarized light with gypsum compensator. C, medullary region, 927 

with the presence of trabeculae and erosion cavities, pointed by arrows, polarized 928 

light with gypsum compensator. Scale bar= 10mm in A; 500µm in B, C. Legend: 929 

C = calcite (sparite and micrite). 930 

 931 

Figure 5. Microscopy of observed mineral grains and diagenetic structures. A, 932 

rounded polycrystalline quartz with slightly eroded edges (center), close to an 933 

isolated secondary osteon (upper right), both surrounded by calcitic matrix and 934 

cement, polarized light. B, quartz grain with features, indicates by arrow, 935 

polarized light. C, rounded plagioclase feldspar grain (arrow), with eroded edges, 936 

polarized light. D, subangular microcline feldspar grain (arrow), with eroded 937 

edges, close to the bone trabeculae under the process of initial tissue 938 

replacement by calcite (“shading” effect), shows by arrow, polarized light. E, 939 

rounded grain of volcanic-like texture (center) with partial replacement, polarized 940 

light. F, grain peloidal texture (center) with spatic calcite overlay (arrow), natural 941 

light. Scale bar= 500µm in A, B, C, D, E, F. Legend: C = calcite (sparite and 942 

micrite), T= trabeculae, Os = secondary osteon. 943 

 944 
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Figure 6. Diagram of the sequence of taphonomic processes inferred for the fossil 945 

rib fragment CP2/200A-B. I, exposure of the bone on the ground surface, 946 

associated with pre-burial weathering and abrasion. II, deposition of the 947 

specimen in a reducing environment, inducing the precipitation of framboidal 948 

pyrite on the inner spaces of the bone. III, deposition of manganese oxides on 949 

apatite crystals due to groundwater action, followed by calcite cementation 950 

related to pedogenesis. IV, deposition of opaque minerals on the bone’s surface, 951 

associated with leaching by rainwater action. 952 
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ARTICLE HIGHLIGHTS 

TAPHONOMY AND PALEOHISTOLOGY OF A DINOSAUR RIB FROM MARÍLIA 

FORMATION, BAURU GROUP, IN THE STATE OF MINAS GERAIS, BRAZIL 

 

 Loss of histological structures due to transport and bone weathering 

 Fossil preservation associated with bone exposure and burial on semiarid 

climate 

 Hypothesis support a taphonomic bias in dinosaur fossils from the Bauru Group 
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