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Abstract.—Morphological data are a fundamental source of evidence to reconstruct the Tree of Life, and Bayesian 
phylogenetic methods are increasingly being used for this task. Bayesian phylogenetic analyses require the use of 
evolutionary models, which have been intensively studied in the past few years, with significant improvements to our 
knowledge. Notwithstanding, a systematic evaluation of the performance of partitioned models for morphological data 
has never been performed. Here we evaluate the influence of partitioned models, defined by anatomical criteria, on 
the precision and accuracy of summary tree topologies considering the effects of model misspecification. We simulated 
datasets using partitioning schemes, trees, and other properties obtained from two empirical datasets, and conducted 
Bayesian phylogenetic analyses. Additionally, we reanalyzed 32 empirical datasets for different groups of vertebrates, 
applying unpartitioned and partitioned models, and, as a focused study case, we reanalyzed a dataset including living 
and fossil armadillos, testing alternative partitioning hypotheses based on functional and ontogenetic modules. We 
found that, in general, partitioning by anatomy has little influence on summary topologies analyzed under alternative 
partitioning schemes with a varying number of partitions. Nevertheless, models with unlinked branch lengths, which 
account for heterotachy across partitions, improve topological precision at the cost of reducing accuracy. In some instances, 
more complex partitioning schemes led to topological changes, as tested for armadillos, mostly associated with models 
with unlinked branch lengths. We compare our results with other empirical evaluations of morphological data and those 
from empirical and simulation studies of the partitioning of molecular data, considering the adequacy of anatomical 
partitioning relative to alternative methods of partitioning morphological datasets. [Evolutionary rates; heterogeneity; 
morphology; Mk model; partition; topology.]

Morphological data are a fundamental source of evi-
dence to reconstruct the Tree of Life. In most cases, 
morphology is the only kind of data available for 
phylogenetic inference of fossil taxa (Wiens 2004). 
Morphology can also complement molecular data in 
inferences of the phylogeny and timescale of living and 
extinct organisms (Lee and Palci 2015). Traditionally, 
morphological datasets have been analyzed with the 
maximum parsimony criterion, but recently, mod-
el-based phylogenetic analyses, in particular Bayesian 
methods, have become widely available (Wright 2019; 
Wright and Lloyd 2020). In parallel with the grow-
ing use of probabilistic approaches, there has been an 
increasing number of studies exploring the perfor-
mance of alternative phylogenetic methods using both 
simulated and empirical morphological data (Wright 
and Hillis 2014; O’Reilly et al. 2016, 2018; Puttick et al. 
2017, 2019; Goloboff et al. 2018b; Schrago et al. 2018; 
Goloboff and Arias 2019; Smith 2019a).

Bayesian phylogenetic analyses of discrete mor-
phology typically use the Mk model (Lewis 2001), 
which is essentially the Jukes–Cantor model of nucle-
otide substitution (Jukes and Cantor 1969) generalized 
for any number of states. Since its original proposal, 
extensions of that model have been presented in 
order to account for the heterogeneity in evolutionary 

patterns present in morphological datasets, like 
allowing for unequal character state frequencies, non-
stationarity, or the use of alternative distributions to 
model among-character rate variation (Harrison and 
Larsson 2015; Klopfstein et al. 2015; Wright et al. 2016; 
Pyron 2017).

Another important way to account for data hetero-
geneity in phylogenetic analyses is through partitioned 
models, in which subsets of the data have their param-
eters estimated independently from those of other 
subsets (Brown and Lemmon 2007; Lanfear et al. 2012). 
Parameters such as the substitution model exchange-
ability rates and nucleotide frequencies, distribution 
of among-character rate variation, and branch lengths 
can be independently inferred for each partition. The 
performance of partitioned models applied to molec-
ular datasets is well explored and understood (Brown 
and Lemmon 2007; Kainer and Lanfear 2015; Duchêne 
et al. 2020). More recently, data partitioning began 
to be applied in studies using empirical morpholog-
ical data, evaluating alternative partitioning criteria, 
including partitioning by anatomy, homoplasy, evo-
lutionary rates, number of character states, neomor-
phic × transformational characters, and clusters in a 
morphospace (Clarke and Middleton 2008; Close et 
al. 2015; Felsinger 2019; Rosa et al. 2019; Simões and 
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Pierce 2021; Casali et al. 2022). These studies, however, 
evaluated partitioned models only for a single or a few 
datasets.

Here we evaluate the performance of data parti-
tioning according to the anatomical criterion (Clarke 
and Middleton 2008; Tarasov and Génier 2015; Porto 
et al. 2021). This criterion considers that subsets of 
characters associated with distinct anatomical mod-
ules evolve at different rates (Tarasov and Génier 
2015). These modules can be defined according to 
hypotheses of character’s structural, functional, or 
developmental integration (Clarke and Middleton 
2008). Usually, those partitions are defined for gen-
eral and localized body regions like cranial × postcra-
nial skeleton (Varela et al. 2019) or internal × external 
anatomy (Porto et al. 2021), but fine-grained hypothe-
ses of partitioning have also been evaluated (Tarasov 
and Génier 2015; Casali et al. 2022). Distinctly from 
other partitioning criteria, especially those applied 
to molecular data, anatomical partitioning requires 
specific knowledge from researchers studying the 
morphology of a given taxonomic group as anatomy 
varies considerably more than molecules when dis-
tantly related groups are compared (e.g., angiosperms 
and mammals).

Although studying the performance of models using 
empirical datasets ensures a greater degree of realism, 
the use of simulated data allows the assessment of the 
accuracy of a given method or model (Hillis 1995), 
something not feasible to do using empirical datasets. 
To the best of our knowledge, no study to date eval-
uated the performance of partitioned models for mor-
phological data using simulations.

We applied anatomically partitioned models for 
simulated morphological datasets in a Bayesian frame-
work, and evaluated their impact on the precision 
and accuracy of the estimated summary topologies, 
considering the effects of using the correct partition-
ing scheme used to simulate the data, and alternative 
partitioning schemes, to explore the influence of parti-
tioning mismodeling. We also reanalyzed 32 vertebrate 
empirical datasets originally proposed to be composed 
of two anatomical partitions—cranial and postcra-
nial (Mounce et al. 2016)—considering unpartitioned 
and partitioned models. Finally, we also conducted a 
detailed evaluation of alternative partitioning hypoth-
eses based on functional and ontogenetic information 
for a dataset of living and fossil armadillos (Barasoain 
et al. 2021).

We show that, in general, partitioning data by anat-
omy has little effect on the precision and accuracy of 
inferred topologies when branches are linked across 
partitions, whereas models with unlinked branch 
lengths across anatomical partitions produce more 
precise but less accurate consensus topologies. We 
also discuss the adequacy of anatomical partitioning 
relative to alternative methods of partitioning mor-
phological data, and compare it to what we know 
about the performance of partitioned models for 
molecular datasets.

Material and Methods

Simulated Data

Simulations.—To simulate partitioned morpholog-
ical datasets, we require a partitioning scheme, a ref-
erence tree (topology and branch lengths), and a few 
properties from empirical datasets (Fig. 1). Those were 
obtained from two studies (Clarke and Middleton 2008; 
Porto et al. 2021), in which the authors applied anatom-
ical partitioning in Bayesian phylogenetic inference. In 
both studies, models using anatomical partitioning pre-
sented a better fit to the data than unpartitioned models, 
according to Bayes factors. Although the original Bayes 
factor comparisons for the first study were conducted 
with an unreliable estimator of marginal likelihoods, 
the harmonic mean (Xie et al. 2011), a recent study con-
firmed the results using stepping-stone sampling (Rosa 
et al. 2019).

The first study, by Clarke and Middleton (2008), was 
the first to evaluate the use of anatomical partitioning 
in Bayesian phylogenetics. This study investigated the 
phylogeny of birds (Dinosauria: Avialae) and included 
25 taxa, most of them extinct. It explored alternative 
anatomical partitioning schemes with two, three, and 
four partitions for the dataset, which will be henceforth 
referred to as dataset A. The second study, by Porto et al. 
(2021), investigated anatomical partitioning by study-
ing the phylogeny of corbiculate bees (Hymenoptera: 
Apidae) and several outgroups, including 50 extant 
taxa. Although this study mainly investigated informa-
tional dissonance among partitions, it also performed 
phylogenetic analyses and Bayes factor comparisons. 
It was also chosen because it contains a partitioning 
scheme with a greater number of partitions than those 
applied to dataset A and is entirely composed of living 
taxa, contrasting with the first dataset. Anatomical par-
titioning schemes with two and seven partitions were 
proposed for this dataset in the original study, which 
will henceforth be referred to as dataset B.

To obtain reference trees for datasets A and B, they 
were reanalyzed with MrBayes 3.2.7a (Ronquist et al. 
2012), replicating the settings of character ordering 
(or lack thereof) as used in the original analyses. For 
each dataset and considering their original anatom-
ical partitioning schemes (Table 1), we applied three 
analytical approaches—(i) unpartitioned analyses, (ii) 
partitioned analyses with linked branch lengths, with 
among-partition rate variation accounted for by parti-
tion-specific rate multipliers, and (iii) partitioned anal-
yses with unlinked branch lengths, which accounts 
for among-partition heterotachy (Marshall et al. 2006). 
We used the Mkv model of character evolution (Lewis 
2001) and applied a discrete gamma distribution with 
four-rate categories to account for among-character 
rate variation (Yang 1996; Harrison and Larsson 2015), 
with unlinked estimates of shape (α) for each partition. 
The Monte Carlo Markov chain settings varied among 
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analyses and are detailed in Supplementary Data S1. 
Trees were summarized as maximum compatibility 
trees (contype = allcompat). Convergence of continu-
ous parameters and topologies was assessed with the 

function analyze.rwty in the package rwty (Warren et al. 
2017) in R environment (R Core Team 2022). We visually 
inspected all trace plots and considered that analyses 
converged when individual runs achieved an effective 

Figure 1. Graphical summary of the methodological steps used in the simulation and the analyses performed for simulated data. ACRV—
Among-character rate variation. APRV—Among-partition rate variation.

Table 1. Properties of partitions considered for empirical datasets A and B, and their associated partitioning schemes

Dataset Scheme Partition Characters Non-info Missing Binary Three st. Four st. Five st. Six st. 

  A s1 ALL 205 16 0.39 0.75 0.22 0.02 0.01 -
  A s4 CRANIAL 52 7 0.53 0.81 0.19 - - -
  A s4 AXIAL 19 0 0.37 0.58 - 0.37 - 0.05
  A s2, s3, s4 PECTORAL 83 3 0.34 0.81 0.14 0.02 0.02 -
  A s3, s4 PELVIC 51 6 0.31 0.65 0.31 0.04 - -
  A s3 CRANIAL_AXIAL 71 7 0.49 0.75 0.14 0.10 - 0.01
  A s2 CRANIAL_AXIAL_PELVIC 122 13 0.42 0.70 0.21 0.07 - 0.01
  B s1 ALL 282 1 0.09 0.69 0.26 0.06 - -
  B s2 EXT 181 0 0.06 0.71 0.25 0.04 - -
  B s2 INT 101 1 0.16 0.64 0.27 0.09 - -
  B s7 HD 42 0 0.05 0.74 0.24 0.02 - -
  B s7 MP 52 0 0.08 0.79 0.17 0.04 - -
  B s7 MS 57 0 0.03 0.68 0.26 0.05 - -
  B s7 WG 16 0 0.09 0.56 0.44 - - -
  B s7 LG 49 0 0.07 0.49 0.37 0.14 - -
  B s7 MT 11 0 0.20 0.82 0.18 - - -
  B s7 GN 55 1 0.21 0.75 0.20 0.05 - -

Note. Characters—total number of characters. Non-info—number of noninformative characters. Missing—average proportion of missing 
cells per character. st. – proportion of characters for a given number of states.

EXT = external; INT = internal; HD = head; MP = mouthparts; MS = mesosoma; WG = wings; LG = legs; MT = metasoma; GN = genitalia.
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sample size (ESS) >200, an average standard devia-
tion of split frequencies (ASDSF) <0.01, and a correla-
tion of splits between runs ≥0.99. All inputs, outputs, 
and files used to assess convergence are available as 
Supplementary Data S1.

We considered seven simulation schemes for dataset A 
(s1—data unpartitioned, s2L—two partitions with linked 
branch lengths, s2U—two partitions with unlinked branch 
lengths, s3L—three partitions with linked branch lengths, 
s3U—three partitions with unlinked branch lengths, s4L—
four partitions with linked branch lengths, and s4U—four 
partitions with unlinked branch lengths). For dataset B, 
five partitioning schemes were applied (s1—data unpar-
titioned, s2L—two partitions with linked branch lengths, 
s2U—two partitions with unlinked branch lengths, s7L—
seven partitions with linked branch lengths, s7U—seven 
partitions with unlinked branch lengths).

Characters were simulated considering the topology 
and branch lengths (in units of substitution) present in 
the reference trees. In addition to partitioning schemes 
and trees, properties from the original partitions were 
also obtained, and applied in simulations—(i) partition 
size (i.e., number of characters per partition), (ii) num-
ber of noninformative characters, (iii) proportion of 
characters for each number of states (e.g., binary, with 
three states), (iv) proportion of missing cells per charac-
ter, (v) distribution of among-character rate variation, 
and (vi) partition rate multipliers. Properties “i–iv” 
were obtained directly from the datasets, whereas prop-
erties “v–vi” have been estimated during the reanaly-
ses of empirical datasets, with “vi” only applying to 
reference trees obtained with linked branch lengths. 
Unlinked empirical analyses return a separate set of 
branch lengths for each partition, which were applied 
during simulations of partitions evolving according to 
unliked branch lengths. To simulate partitions evolving 
according to linked branch lengths, branch lengths of 
the reference topology were multiplied by the empirical 
partition rate multiplier.

Characters in each partition were simulated in R 
using the package dispRity (Guillerme 2018). We used 
the function sim.morpho to generate variable char-
acters, with the number of characters with a given 
number of states in each partition following the pro-
portions obtained from empirical datasets (Table 1). 
After simulating each character, we checked if it was 
generated as a parsimony-informative character, and 
if not, the character was discarded and resimulated 
until this condition was satisfied. This procedure 
was repeated until we achieved the desired parti-
tion size, as informed by the empirical data (Table 1). 
Characters were simulated considering the Mkv+G 
model, with the rate/shape parameter of gamma 
distributions for each partition obtained from the 
reanalyses of the two empirical datasets.

Missing data are frequently present in morphologi-
cal datasets, especially those including or exclusively 

composed of fossil taxa, with their distribution rarely 
being random (Prevosti and Chemisquy 2009). We 
attributed missing data to the simulated partitions by 
recoding cells to “?,” sampling the number of missing 
cells per character from the empirical distribution of 
the respective partition, thus mimicking a nonrandom 
distribution of missing data. Whenever a character was 
turned noninformative due to this process, the missing 
data attribution was redone, ensuring that all modified 
characters were kept as parsimony informative. After 
that, we converted some characters to noninforma-
tive (all taxa coded as 0) in the proportion they were 
observed in that condition in empirical partitions (Table 
1). We did not differentiate genuine missing data from 
inapplicable characters in this study since MrBayes 
consider them in the same manner. We generated 200 
replications of each partition/dataset to account for the 
stochasticity in the character’s simulation. The custom 
R scripts used for the simulations and the simulated 
datasets are available as Supplementary Data S2.

Phylogenetic analyses.—We analyzed each simulated 
dataset with all strategies of data partitioning (x) also 
used to simulate them (s), resulting in 49 combinations 
for dataset A and 25 for dataset B (Fig. 2). In that way, 
we were able to explore the influence of two types of 
modeling mismatch in the summary topologies—(i) 
partition number mismatch, with underpartitioned, 
correctly partitioned (i.e., matching the number of par-
titions that data were simulated and analyzed with) 
and overpartitioned models being considered, and (ii) 
branch length mismatch, considering analyses with 
linked and unlinked branch lengths across partitions. 
Analyses were performed with Bayesian inference in 
MrBayes, applying the Mkv+G model of character evo-
lution, to be consistent with the conditions used to sim-
ulate the data. We initially set all analyses with two runs 
of 10M generations, with four chains each, sampling 
every 500th generation. The initial 25% of the samples 
were discarded as burn-in before summarizing contin-
uous parameters and trees, with the latter being sum-
marized into a maximum compatibility tree. Analyses 
were terminated before achieving the total number of 
generations when ASDSF reached values below 0.01. 
We set the diagnfreq to 5M generations to ensure a mini-
mum sample size before checking ASDSF and finishing 
each analysis. Convergence was checked using ASDSF 
< 0.01, and ESS >100 for each run, using functions mcmc 
and effectiveSize in R package coda (Plummer et al. 2006). 
We also obtained 50% majority-rule consensus trees col-
lapsing nodes with posterior probabilities <0.5 in the 
maximum compatibility tree in R, using the functions 
read_annotated of package phylotate (Beer and Beer 2019) 
and collapseUnsupportedEdges of the package ips (Heibl 
2008). Summary trees and the files with the convergence 
assessment are available as Supplementary Data S2.

Topological similarity, precision, and accuracy.—We com-
pared the summary topologies obtained from the anal-
yses of each simulated dataset to the topology of the 
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reference tree used to simulate it (Fig. 1). Topological 
similarity was evaluated with the Mutual Clustering 
Information (MCI), an information-theoretic gener-
alized Robinson–Foulds metric available in the pack-
age TreeDist (Smith 2020a, 2020b), and the Quartet 
Divergence metric (QD), available in the package 
Quartet (Smith 2019b, 2019a). Both metrics range from 
0 (complete dissimilarity) to 1 (complete similarity). 
Nonetheless, these distance metrics are limited if we 
wish to make an independent assessment of the accu-
racy and precision of summary topologies that are not 
fully resolved, as is the case of the 50% majority-rule 
consensus topology, since it can conflate similarity due 
to correct resolution with that from lack of resolution 
(Keating et al. 2020). Thus, we also adopted two addi-
tional metrics. For precision, we calculated the propor-
tion of resolved bipartitions/quartets (actual number 
of resolved/maximum possible number of resolved 
bipartitions/quartets). For accuracy, we calculated 
the proportion of correct bipartitions/quartets (cor-
rectly resolved/total number of resolved bipartitions/
quartets). Bipartition and quartet status were calcu-
lated using the functions SplitStatus and QuartetStatus, 
respectively, in the package Quartet (Smith 2019b). For 
the purpose of this study, we are defining precision as 
the degree of resolution of a consensus topology. This 
is only a partial aspect of precision in Bayesian analy-
sis, which can also be assessed, for example, by count-
ing the number of unique topologies in the posterior 
sample (or in the 95% HPD), or more thoroughly, by 
inspecting the obtained tree space (Wright and Lloyd 
2020; Smith 2022).

Before summarizing the results, we excluded all 
analyses that failed to converge in at least one of the 
inspected criteria (9% for dataset A and 13% for dataset 
B, Supplementary Data S2). Convergence issues were 
present in most groups (i.e., unique combinations of s 

and x) but were more prevalent in analyses with par-
titioning schemes with more partitions and/or with 
unlinked branch length, in which the number of param-
eters to be inferred is greater, with partitioning 7U of 
dataset B being the most affected.

We assessed the significance of the difference between 
pairs of distributions of metrics calculated for alter-
native partitioning schemes with a Wilcoxon rank-
sum test (Wilcoxon 1945), with α = 0.05, applying a 
Bonferroni correction to control for multiple compari-
sons (Bonferroni 1936). Pairwise comparisons between 
all analyzed partitioning schemes were considered 
(e.g., x1 to x2L, x1 to x2U) for each simulated partition-
ing scheme (e.g., s1, s2L, s2U). We expect that, if ana-
tomical partitioning is an effective way to account for 
rate heterogeneity in morphological datasets, when 
simulated and analyzed partitioning schemes match 
(e.g., s3U and x3U), more similar, precise, and accurate 
topologies will be obtained, if compared to analyses 
not matching the simulated partitioning scheme. On 
the other hand, if distributions of metrics of topological 
similarity, accuracy, and precision end up being very 
similar for alternative partitioning schemes, anatomical 
partitioning can be regarded as of little importance for 
tree topology estimation. Additionally, a gain of preci-
sion accompanied by a decrease in accuracy can be con-
sidered an undesirable property of a given partitioning 
scheme, indicating a spurious resolution of the relation-
ships among taxa. The opposite would be a positive fea-
ture, rendering the inference more conservative in not 
resolving the topology inaccurately.

Empirical Data

Datasets.—For a systematic evaluation of the perfor-
mance of anatomical partitioning on empirical morpho-
logical data, we investigated several vertebrate datasets 
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previously analyzed by Mounce et al. (2016), reana-
lyzing them using partitioned models with Bayesian 
inference. Mounce et al. (2016) defined two anatomical 
partitions for all datasets, one for cranial and another 
for postcranial characters. When analyzed separately 
using maximum parsimony, in some instances, those 
two partitions produced significantly different topol-
ogies according to the incongruence relationship dif-
ference (IRD) test (Mounce et al. 2016). We selected all 
32 datasets that satisfied that condition for one or both 
versions of the IRD test used in the original study to 
be reanalyzed here applying the same partitions pro-
posed in Mounce et al. (2016). Supplementary Data S2 
contains a list of those datasets and details of their par-
titions and other properties.

Additionally, we conducted a detailed case study for 
a dataset of Cingulata (Mammalia, Xenarthra) from 
the study of Barasoain et al. (2021), originally com-
posed of 148 craniomandibular and carapace char-
acters for 25 living and extinct armadillos, plus two 
outgroup taxa. We investigate seven alternative par-
titioning schemes: (i) unpartitioned; (ii) functional 
partition F1, which separates craniomandibular char-
acters from those of the carapace (two partitions); 
(iii) functional partition F2, which further separates 
cranial characters according to three modules (oral/
nasal, orbital/braincase, and basicranium/ear), and 
the carapace (four partitions); (iv) ontogenetic parti-
tion O1, in which character were segregated accord-
ing to the developmental ossification pattern (dermal 
× endochondral, two partitions); (v) ontogenetic par-
tition O2, according to the germ layer giving rise to 
the bones associated with the character (neural crest 
cells × mesoderm, two partitions); (vi) mixed par-
tition M1, as O1, but with carapace characters allo-
cated in a separate partition (three partitions); and 
(vii) mixed partition M2, as O2, but with carapace 
characters allocated in a separate partition (three 
partitions). The functional partitioning scheme F2 
was defined following the mammalian modules rec-
ognized by Porto et al. (2009), considering the par-
tial overlapping of modules observed for Cingulata. 
The ontogenetic association of mammalian cranial 
bones and cingulate carapace was obtained from 
reviews and recent studies (Novacek 1993; Noden 
and Trainor 2005; Kardong 2012; Koyabu et al. 2014; 
Maier and Ruf 2016; Krmpotic et al. 2021). Five of the 
148 characters were removed from all the analyses 
since they could not be unambiguously associated 
with any partition due to our incomplete knowledge 
regarding the ontogeny of some bones (i.e., septo-
maxilla and entotympanic), or in cases in which the 
character is irreducibly associated with multiple 
bones with different ossification patterns or develop-
mental origins (e.g., the sagittal crest, associated with 
frontals—originated from the neural crest, and with 
parietals—originated from the mesoderm). A list of 
the characters and their assignment to partitions is 
available in Supplementary Data S3.

Phylogenetic analyses.— The 32 vertebrate datasets 
were reanalyzed using Bayesian inference, with three 
approaches—(i) unpartitioned, (ii) partitioned, with 
linked branch lengths, and (iii) partitioned, with 
unlinked branch lengths. We applied the character 
ordering (or lack thereof) as in the original datasets and 
used the Mkv+G model. Analyses were performed in 
two runs, with four chains each, for 10M generations, 
sampling every 2000th. Some datasets demanded more 
generations to converge (20–25M). A burn-in of 25% 
was applied, and trees were summarized into maxi-
mum compatibility consensus trees. We also obtained a 
50% majority-rule consensus in R, as reported for sim-
ulated data. Convergence was checked with rwty, as 
described for empirical datasets A and B analyses. Two 
of the 32 vertebrate datasets consistently failed to con-
verge in unlinked analyses and were not considered in 
the results. All inputs, outputs, and files used to assess 
convergence are available in Supplementary Data S3.

The Cingulata dataset was also subjected to the same 
phylogenetic inference procedures described above for 
the vertebrate datasets, but with 5M generations, sam-
pling every 500th. All inputs, outputs, and files used 
to assess convergence are available in Supplementary 
Data S4.

Topological precision and similarity.—The metrics used 
to evaluate precision in the analyses of simulated data 
were also applied to the vertebrate empirical datasets, 
comparing consensus tree resolution across alternative 
partitioning schemes. Also, the proportion of biparti-
tions/quartets resolved in the same way, and the topo-
logical similarity was computed. As for simulated data, 
significance was assessed with a Wilcoxon rank-sum 
test. For the Cingulata dataset, the topological similar-
ity was evaluated for all pairs of partitioning schemes.

All R scripts used for calculating the metrics of simi-
larity, accuracy, and precision; plot the results; and cal-
culate summary and test statistics for simulated and 
empirical datasets are available as Supplementary Data.

Results

Simulated Data

General remarks.—Data simulated with unlinked branch 
lengths returned topologies more similar to reference 
topologies if compared to data simulated with linked 
branch lengths or unpartitioned. This pattern is also 
associated with the increase in the number of parti-
tions applied in simulations with unlinked branch 
lengths. This pattern can be observed irrespective of the 
metric of similarity applied, collapsing regime (maxi-
mum compatibility tree—allcompat, 50% majority-rule 
consensus—halfcompat), or dataset (Figs. 3a and 4a, 
Supplementary Data S4 and S5). For simulations s3U 
and s4U of datasets A, and s7U of dataset B, very accu-
rate topologies were recovered (also well resolved in 
the case of s7U), not showing differences associated 
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with the partitioning scheme used to analyze the data 
(Figs. 3b and 4b, Supplementary Data S4 and S5).

Topological similarity.—For both datasets and collaps-
ing regimes, mismatches related to the number of 
partitions in simulated and analyzed conditions were 
of little consequence to topological similarity (Figs. 3a 
and 4a, Supplementary Data S4 and S5). For dataset A, 
when simulated and analyzed branch lengths condition 
matched, topologies tended to be equally or more sim-
ilar to those of their respective reference tree (except in 
simulation s3L, Fig. 3a, Supplementary Data S4). On the 
other hand, for dataset B analyses with unlinked branch 
lengths mostly returned equally or more dissimilar 
topologies compared to those obtained with unparti-
tioned and linked models, irrespective of how branch 
lengths were simulated (Fig. 4a, Supplementary Data 
S5). Despite that, only allcompat topologies from anal-
yses x7U of simulation s1 of dataset B showed signifi-
cant differences compared to unpartitioned and linked 

partitioned analyses (Fig. 5, Supplementary Data S6 
and S7).

Topological precision.—As for similarity, matching the 
number of partitions in simulated and analyzed con-
ditions had a negligible impact on topological resolu-
tion (Figs. 3b and 4b, Supplementary Data S4 and S5). 
However, when the data were analyzed with unlinked 
branch lengths, more resolved topologies were obtained 
than in analyses with unpartitioned or linked models 
(Figs. 3b and 4b, Supplementary Data S4 and S5), with 
most of these differences being statistically significant 
(Fig. 5, Supplementary Data S6 and S7).

Topological accuracy.—As for similarity and precision, 
matching the number of partitions in simulated and 
analyzed conditions has not led to substantial changes 
in topological accuracy (Figs. 3b and 4b, Supplementary 
Data S4 and S5). In contrast to what was observed for 

Figure 3. Topological similarity, precision, and accuracy evaluated by comparing topologies obtained by analyzing the simulated data 
(dataset A) to topologies of their respective reference trees. (a) Topological similarity, assessed with Mutual Cluster Information (bipartitions) 
and Quartet Divergence (quartets) for maximum compatibility (allcompat) and 50% majority-rule consensus trees (halfcompat). (b) Proportion 
of resolved and correct bipartitions/quartets in halfcompat trees. Boxplots summarize the metrics for all combinations of simulated (s) and 
analyzed (x) partitioning schemes.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/7

2
/1

/6
2
/6

8
7
4
5
1
0
 b

y
 B

ib
lio

te
c
a
 d

o
 C

o
n
j. d

a
s
 Q

u
ím

ic
a
s
-U

S
P

 u
s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
3



CASALI ET AL. - INFLUENCE OF ANATOMICAL PARTITIONS ON TOPOLOGY2023 69

precision, accuracy usually decreases in topologies 
resulting from analyses with unlinked branch lengths. 
On the other hand, topologies from partitioned analy-
ses with linked branch lengths and unpartitioned anal-
yses were at least equally, but frequently more accurate 
(Figs. 3b and 4b, Supplementary Data S4 and S5). 
Although these differences are apparent upon inspect-
ing the median values in boxplots, they were only sta-
tistically significant in comparisons including analyses 
x7U of dataset B, which returned considerably less 
accurate topologies (Figs. 4 and 5, Supplementary Data 
S5–S7).

Empirical Data

Analyses of vertebrate empirical datasets showed 
results aligned with those observed for simulations. 
Topologies obtained with unpartitioned models were 
very similar to those obtained with partitioned models 
with linked branch lengths (median similarity >0.99, 
Fig. 6a, Supplementary Data S8), whereas models 

with unlinked branch lengths led to slightly less sim-
ilar topologies relative to the other two treatments 
of branch lengths (median similarity ~0.93, Fig. 6a, 
Supplementary Data S8).

In five of eight pairwise comparisons, the similarity 
between topologies obtained with unpartitioned and 
linked models was significantly different from the sim-
ilarity between topologies obtained with unpartitioned 
versus unlinked and from the similarity between topol-
ogies obtained with linked versus unlinked compari-
sons (Fig. 6a, Supplementary Data S9). However, when 
comparing both distributions of similarity including the 
unlinked model (i.e., unpartitioned vs. unlinked and 
linked vs. unlinked), they were not significantly differ-
ent (Fig. 6a, Supplementary Data S9). The greater simi-
larity between topologies obtained with unpartitioned 
and linked models was also reflected in the number of 
common bipartition/quartets, with topologies resulting 
from unpartitioned and linked analyses sharing a few 
more bipartitions/quartets than each of them shares 
with those topologies obtained from unlinked analyses 

Figure 4. Topological similarity, precision, and accuracy evaluated by comparing topologies obtained by analyzing the simulated data 
(dataset B) to topologies of their respective reference trees. (a) Topological similarity, assessed with Mutual Cluster Information (bipartitions) 
and Quartet Divergence (quartets) for maximum compatibility (allcompat) and 50% majority-rule consensus trees (halfcompat). (b) Proportion 
of resolved and correct bipartitions/quartets in halfcompat trees. Boxplots summarize the metrics for all combinations of simulated (s) and 
analyzed (x) partitioning schemes.
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Figure 5. Summary of Wilcoxon rank-sum test for the significance of the difference between metrics calculated for alternative partitioning 
schemes (x) in each simulation condition (s). Significant differences are indicated in black. (a) Dataset A. (b) Dataset B. Metrics—topological 
similarity, assessed with Mutual Cluster Information (bipartitions), and Quartet Divergence (quartets) for maximum compatibility (allcompat) 
and 50% majority-rule consensus trees (halfcompat), and the proportion of resolved and correct bipartitions/quartets in halfcompat trees.
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(Fig. 6b, Supplementary Data S8). Nevertheless, none of 
the pairwise comparisons indicated statistically signif-
icant differences (Fig. 6b, Supplementary Data S8). As 
also observed for simulated data, partitioning schemes 
with unlinked branch lengths resulted in slightly bet-
ter resolved halfcompat topologies, but these differ-
ences were not statistically significant either (Fig. 6b, 
Supplementary Data S8 and S9).

The topologies from the allcompat trees obtained 
from the analyses of the Cingulata mostly conformed 
to the general pattern observed for simulations and 
the vertebrate datasets. All unpartitioned and linked 
models returned identical topologies, whereas three 
of five unlinked models led to different topologies 
(Fig. 7). Nevertheless, halfcompat topologies differ in 
their degree of resolution, unrelated to the treatment of 
branch lengths (Table 2), with alternative partitioning 
hypotheses leading to slightly different topologies (Fig. 
7, Supplementary Data S4).

Discussion

The Performance of Anatomical Partitioning

The use of adequate models is of paramount impor-
tance for statistical phylogenetics, and partitioned 
morphological models are only beginning to be inves-
tigated regarding their performance (Rosa et al. 2019; 
Casali et al. 2022). We present here the first simulation 
study of the performance of anatomical partitioning, 
as well as the first study of this kind for morphological 
partitioning in general. We also present the first sys-
tematic evaluation of anatomical partitioning applied 
to several morphological datasets in Bayesian phylo-
genetics. Previous studies that conducted a detailed 
evaluation of anatomical partitioned models for mor-
phological datasets were limited to exploring only 
one or a few empirical datasets and focused mainly 
(though not exclusively) on model selection using 
Bayes factor (Tarasov and Génier 2015; Rosa et al. 2019; 
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Figure 6. Topological similarity, precision, and the common number of bipartitions/quartets shared by topologies inferred under alternative 
partitioning schemes—unpartitioned (Unpart); partitioned, with linked branch lengths (Linked); and partitioned, with unlinked branch 
lengths (Unlinked). (a) Topological similarity, assessed with Mutual Cluster Information (bipartitions), and Quartet Divergence (quartets), for 
maximum compatibility (allcompat) and 50% majority-rule consensus trees (halfcompat). (b) Proportion of resolved and common bipartitions/
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respectively—and not to pairwise comparisons, as for the other metrics. Brackets indicate significant results.
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Porto et al. 2021; Casali et al. 2022). Model selection is 
undeniably an important step of statistical phyloge-
netic reconstructions, and Bayes factor reliability as 
a criterion to select appropriate partitioning schemes 

is well established (Brown and Lemmon 2007; Rosa et 
al. 2019; Casali et al. 2022). Nonetheless, a systematic 
assessment of the impact of partitioning on estimates 
of parameters of major interest in phylogenetic analy-
ses—such as topological precision and accuracy—was 
lacking for morphological data, despite being much 
better understood for molecular data (Brown and 
Lemmon 2007; Kainer and Lanfear 2015).

Based on the results of simulated and vertebrate 
empirical datasets, we found that topological precision 
and accuracy were not much affected by anatomical 
partitioning. Overall, our results agree with previous 
findings that reported minor variations in tree topology 
using anatomical partitioning of empirical datasets, 
despite relevant differences in estimates of marginal 
likelihoods among models (Tarasov and Génier 2015; 
Rosa et al. 2019; Casali et al. 2022). Previous empirical 
studies have shown that some anatomical partitions 
can be preferred to unpartitioned analysis using Bayes 
factor criterion (Tarasov and Génier 2015; Rosa et al. 
2019; Varela et al. 2019). Those results may initially 
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Figure 7. Topological similarity for maximum compatibility (allcompat) and 50% majority-rule consensus trees (halfcompat) obtained with 
the alternative models evaluated for the Cingulata dataset.

Table 2. Proportion of resolved bipartitions and quartets for the 
alternative models evaluated for the Cingulata dataset

Model Bipartitions Quartets 

UN 0.67 0.83
F1L 0.75 0.91
F2L 0.79 0.95
O1L 0.67 0.83
O2L 0.67 0.83
M1L 0.79 0.95
M2L 0.67 0.83
F1U 0.75 0.95
F2U 0.83 0.91
O1U 0.71 0.88
O2U 0.67 0.84
M1U 0.75 0.90
M2U 0.75 0.85

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/7

2
/1

/6
2
/6

8
7
4
5
1
0
 b

y
 B

ib
lio

te
c
a
 d

o
 C

o
n
j. d

a
s
 Q

u
ím

ic
a
s
-U

S
P

 u
s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
3



CASALI ET AL. - INFLUENCE OF ANATOMICAL PARTITIONS ON TOPOLOGY2023 73

appear to be at odds with what we observed for topol-
ogies, but we are dealing with different aspects of the 
performance of partitioned models, and it is quite pos-
sible for a model to better fit the data with no impact 
on the topology or to produce only a slightly different 
topology if compared to those obtained with an unpar-
titioned model.

We should be careful interpreting the results of anal-
yses applying the model x7U for dataset B, frequently 
associated with statistically significant results for its 
increased precision and diminished accuracy. These 
analyses were also disproportionately affected by con-
vergence issues, which is most likely associated with the 
fact that this scheme includes two very small partitions 
(<20 characters and <10% of the dataset), which may 
have posed difficulties in estimating the greater number 
of parameters present in unlinked analyses. Previous 
investigations observed that even in less parameterized 
models applying linked branch lengths, very imprecise 
estimates of rate multipliers are obtained for small ana-
tomical partitions (Casali et al. 2022).

Studies of empirical datasets that separately analyzed 
anatomical partitions recovered topologies significantly 
different between those partitions, at least for part of 
the datasets analyzed (Mounce et al. 2016; Sansom and 
Wills 2017; Li et al. 2020). We reanalyzed some of those 
datasets and showed that when we use combined (i.e., 
total evidence, Kluge 1989) analysis, those topologi-
cal differences are accommodated in the same or very 
similar consensus topologies irrespective of whether 
or not we use anatomical partitions with linked branch 
lengths. Moreover, it is relevant to know that different 
partitions, if analyzed separately, would produce dif-
ferent topologies, but it does not necessarily imply that 
this would affect the topologies of partitioned models 
in combined analyses. In combined analyses, characters 
from different partitions interact and can reveal a hid-
den phylogenetic signal (Gatesy et al. 1999; Mounce et 
al. 2016), influencing the resulting topology. Unlinked 
branch lengths resulted in somewhat distinct topolo-
gies for empirical datasets, mostly due to their greater 
resolution. However, given the results of the simula-
tions, this increased precision may not be a positive out-
come, given the tendency of these models to negatively 
impact accuracy.

The case study of Cingulata allowed us to test more 
sophisticated hypotheses of anatomical partitioning. 
Modules obtained in morphometric analyses can be 
associated with evolutionary character covariation, 
which could ultimately reflect genetic and epigenetic 
pleiotropy and its interaction with natural selection or 
drift (Melo et al. 2016; Zelditch and Goswami 2021). 
Ontogenetic hypotheses for data partitioning are also 
conceptually interesting because they can relate to 
developmental constraints and biases, including shared 
heterochronic patterns (Koyabu et al. 2011, 2014), 
which would render characters interdependent to some 
extent. Despite that, partitioning schemes based on 
those criteria did not lead to distinct allcompat topol-
ogies in most of our analyses, a result aligned with 

those we obtained with simulated data and the verte-
brate datasets. However, unlinked models sometimes 
returned different allcompat topologies, and different 
halfcompat topologies were obtained even with linked 
branch lengths, given the different degrees of resolu-
tion produced by some models. These complex parti-
tioning hypotheses require expertise in the group being 
studied, so they were restricted here to a single dataset 
and did not allowed us to take general conclusions. It 
would be critical, nonetheless, that future studies with 
other datasets investigate how widespread this pattern 
is when applying similar partitioning schemes.

Comparison with Alternative Morphological Partition 
Schemes

In light of the results obtained here, in Rosa et al. 
(2019) and Casali et al. (2022), we can speculate that the 
partitioning of morphological datasets using anatomi-
cal subsets may not be the best approach to deal with 
the patterns of rate heterogeneity present in these data-
sets. Our results also suggest that phenotypic modular-
ity may not be associated with anatomical partitions as 
they have been defined in phylogenetic studies.

Partitioning by homoplasy has been shown to per-
form consistently better than anatomical partitioning 
(Rosa et al. 2019), and methods that partition datasets 
using other proxies of evolutionary rates (e.g., as imple-
mented in PartitionFinder2, Lanfear et al. 2016) also 
outperformed partitioning by anatomy for some data-
sets, although less consistently than when homoplasy is 
applied to segregate characters across partitions (Rosa 
et al. 2019). Casali et al. (2022) also observed that homo-
plasy-based partitions outperformed anatomical parti-
tioning, with the latter returning very similar topologies 
to those obtained with unpartitioned models. It is 
straightforward to understand why this is the case since 
the primary goal of partitioning is to collectively model 
characters that share similar evolutionary patterns and 
rates, with their parameters estimated separately from 
those of other subsets of characters. Anatomical parti-
tions may not produce well-segregated subsets since 
they are usually composed of characters of variable 
nature, like variations in shape, size, proportions, orga-
nization, and presence or absence of disparate kinds of 
structures (Casali et al. 2022). On the other hand, the 
degrees of homoplasy can work as direct proxies for 
the evolutionary rates (Rosa et al. 2019). Morphological 
characters may also be better segregated among parti-
tions using other algorithmic approaches that directly 
focus on character rate variation (e.g., Azevedo et al. 
2022).

Notwithstanding, methods using homoplasy or other 
rate-based metrics are necessarily topology dependent, 
and their sensitivity to a specific topology and the 
optimality criterion used to obtain it remains poorly 
explored (but see Felsinger 2019; Casali et al. 2022). 
Studies exploring homoplasy partitioning calculated 
the homoplasy indices with implied-weights parsimony 
with the parameter governing the strength of weighting 
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(k) set to the default value (Rosa et al. 2019; Brazeau et 
al. 2020; Lucena and Almeida 2021; Matos-Maraví et al. 
2021). However, it has been recently shown that since 
alternative values for this parameter (or using equal 
weights parsimony) may lead to different topologies, 
this may result in different allocations of characters 
across partitions, which, in turn, can lead to different 
summary topologies in Bayesian inference (Casali et al. 
2022). Additional studies will be necessary to further 
evaluate the magnitude of the influence of this initial 
topology on rate and homoplasy-based data partition-
ing methods, including simulations and more compre-
hensive systematic evaluations of empirical datasets.

Comparison with Molecular Data Partitioning

The use of partitioned models in molecular phyloge-
netics is a well-established practice (Brandley et al. 2005; 
Blair and Murphy 2011; Kainer and Lanfear 2015), and 
different criteria have been applied to define those data 
subsets, like genes across the genome, introns × exons, 
codon positions, and stem × loop regions (Brandley et 
al. 2005; Kainer and Lanfear 2015). Conceptually, par-
titioning constitutes the same procedure for morpho-
logical and molecular data. In both cases, the objective 
of this approach is to separately infer parameters for 
data subsets that were hypothesized to evolve—to 
some extent—independently from the other subsets of 
a given dataset (Clarke and Middleton 2008; Lanfear 
et al. 2012). In practice, however, quite distinct substi-
tution models are often selected and applied to alter-
native molecular partitions (Lemmon and Moriarty 
2004), whereas for morphology, all partitions usually 
have characters modeled by the Mk model. Although 
an extension of this model allowing frequency asym-
metry among states is available (Wright et al. 2016), it 
has been rarely used (e.g., Simões et al. 2020; May et al. 
2021). The asymmetrical model is more prone to over-
parameterization and poses difficulties in achieving 
convergence, which may discourage its use (Simões et 
al. 2020). An alternative asymmetric Mk model (Pyron 
2017) or a nonstationary Mk model (Klopfstein et al. 
2015) have also been proposed but are seldom used. 
In that way, in practice, morphological data partitions 
differ in fewer and, probably, less consequential param-
eters, potentially explaining part of the disagreements 
between our results and those obtained by evaluating 
molecular data partitioning.

Differently from what we observed here for mor-
phology, for molecular datasets, alternative partition-
ing usually leads to moderate to substantial impacts on 
tree topology (Nylander et al. 2004; Kainer and Lanfear 
2015). In another study, also using molecular data, topo-
logical differences were more modest and mostly asso-
ciated with weakly supported nodes (Brandley et al. 
2005). An improvement in resolution, which is directly 
related to the increase in node support in Bayesian infer-
ence, was reported for partitioned analyses of molec-
ular datasets (e.g., Brandley et al. 2005). In contrast, 
some other studies reported a general decrease in node 

support, but with greater differences observed only in 
clades presenting lower support values (e.g., Powell et 
al. 2013). Systematic assessments of node support for 
simulated molecular data using partitioned models 
and Bayesian inference indicates that mismodeling can 
increase the variance of estimated posterior probabili-
ties, without a trend for higher or lower values (Brown 
and Lemmon 2007).

Here, on the other hand, we observed that mismod-
eling is not much consequential. Topological resolution 
is mainly affected when branches are unlinked during 
analyses, irrespective of how data were simulated or 
the number of partitions being considered in analy-
ses. However, this improvement in precision is accom-
panied by a decrease in accuracy; and hence, it is an 
undesirable property of these models. Linked branch 
lengths have been better supported for most molecu-
lar (Duchêne et al. 2020) and morphological datasets 
(Tarasov and Génier 2015; Rosa et al. 2019), which may 
indicate that these less parametrized models may, in 
many instances, capture the shared temporal compo-
nent of branch lengths common to all partitions and 
characters. This also suggests that the effects of heterot-
achy may be less important at the level of anatomical 
modules, even though they have been shown to be rel-
evant at the level of individual morphological charac-
ters (but not so much for molecular data, Goloboff et 
al. 2018a).

We also observed that under- and overpartitioning 
have equally negligible impacts on topological pre-
cision and accuracy. This is quite different from the 
results observed for empirical molecular data, for which 
it was observed that the impacts of ignoring partition-
ing are more severe than using incorrectly underparti-
tioned schemes (Kainer and Lanfear 2015). Simulations 
showed a continuous loss of precision in estimates of 
node support from correct to gradually under or over-
partitioned schemes for molecular data (Brown and 
Lemmon 2007), with a clear pattern of loss of precision 
when wrong partitioning schemes were applied.

Despite those incongruences observed between 
the performance of data partitioning for morpho-
logical and molecular datasets, it may be premature 
to assume that this can be fully explained as a differ-
ence in the nature of data used in the analyses. Other 
morphological partitioning criteria, particularly by 
homoplasy (Rosa et al. 2019), maybe more appropri-
ate and achieve performance comparable to molecu-
lar partitioning, in the sense of affecting the inferred 
topologies more substantially, as shown by Casali et 
al. (2022).

Limitations of Simulations and Future Directions

Simulated data will always be limited in complexity 
if compared to empirical datasets. Despite that, simula-
tion studies provide insights complementary to those 
obtained from the exploration of empirical data, and it 
is noteworthy that the general pattern which emerged 
here from simulations was also recovered for empirical 
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datasets, reinforcing our conclusions. However, the 
results obtained with the use of more complex anatomi-
cal partitions, as those applied to the Cingulata dataset, 
suggest that some partitioning hypotheses may be more 
consequential to topological inference than the typical 
anatomical modules usually applied in phylogenetic 
studies, even though this may also be a dataset-specific 
pattern; and hence, not generalizable.

The list of possible variables to be explored as poten-
tial interacting factors in a simulation is extensive and 
practical limitations should be considered, in order to 
focus on what seem to be the more relevant parame-
ters for the matter at hand (Barido-Sottani et al. 2020). 
Here we adopted a method for data simulation directly 
informed by those parameters and properties of empir-
ical datasets that seemed more relevant to simulate 
partitioned datasets. Nonetheless, the simulation of 
morphological data is a complex endeavor, and many 
important aspects were not considered directly here, 
such as the hierarchical relationship of characters 
(Tarasov 2019, 2020) or correlations and the presence of 
serial homology (Billet and Bardin 2019), to cite a few 
examples.

Adopting only two empirical datasets as references 
to simulate the data is another limitation of our study, 
although results were, in general, consistent between 
them. This is relevant, since they differ in many funda-
mental properties, like the number of taxa, number of 
partitions per partitioning scheme, partition sizes, and 
missing data distribution. Future simulation studies 
may benefit from exploring properties from more data-
sets and variations in those parameters, among others.

Lastly, we have focused on the influence of anatom-
ical partitions on topologies of nonclock trees. There 
is a growing interest in co-estimating topologies and 
divergence times by applying tip-dating methods for 
morphological data, and clock partitions have been 
increasingly used in these analyses (Lee 2016; Zhang 
and Wang 2019; Simões et al. 2020; Simões and Pierce 
2021). Simulation studies will be necessary to evalu-
ate how partitions may influence not only topological 
precision and accuracy, but other parameters as well, 
like divergence times and evolutionary rates in these 
analyses and in analyses combining morphological and 
molecular data.

Conclusion

Our results indicate that partitioning by anatomy 
has, overall, a minor influence on summary topolo-
gies while conducting Bayesian phylogenetic anal-
yses of morphological data and that models with 
unlinked branch lengths should be used with caution 
when applied alongside anatomical partitions, given 
their tendency to produce more resolved but less 
accurate consensus topologies. However, we should 
bear in mind that a few empirical datasets have been 
influenced by anatomical partitioning, and the per-
formance of these models in the inference of other 

parameters, like partition-specific evolutionary rates 
was not explored here, so it would not be reasonable 
to entirely discourage their use. That being consid-
ered, it is likely that other ways of partitioning data 
may perform better than the anatomical criterion, 
such as using character’s homoplasy indices or rates 
to define partitions. Researchers should also consider 
the costs—in time and resources—and the potential 
benefits of exploring alternative partition schemes in 
their empirical studies, and hopefully, this study can 
provide some guidance in this evaluation.
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