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Abstract
A link between morphological diversity and species richness is often implied in several evolutionary concepts, but conflicting 
results hamper a more direct link between these variables. Using a morphologically and ecologically diverse clade of Neo-
tropical cricetids, Akodontini, we (1) characterized the tribe’s patterns of morphological disparity and lineage diversification, 
contrasting the two major clades; and (2) tested whether morphological disparity and rates of morphological evolution are 
associated with their lineage diversification patterns. We found no correlation between diversification rates and morpho-
logical patterns; instead, our results reveal a pattern of ecological and morphological diversification that is independent of 
cladogenetic events. We found higher rates of morphological evolution in lineages with longer independent evolutionary 
histories, leading to fewer, but more disparate and specialized species occupying the peripheral areas of the ecomorphospace 
and increasing the overall morphological diversity of the group.
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Introduction

Understanding the underlying patterns of morphologi-
cal diversity is a major challenge in evolutionary biology, 
due to its potential interaction with lineage diversification 
dynamics, rates of morphological evolution, and ecological 
differentiation (Hopkins & Gerber, 2018; Schluter, 2000). 
Morphological diversity, or disparity (Foote, 1993a), can 
increase in events of speciation (Rabosky et al., 2013), 
where lineage divergence is accompanied by morphological 
differentiation. One of the processes that is usually linked to 
an association between diversity and disparity is described 
by the punctuated equilibrium theory (Eldredge & Gould, 
1972; but see Hopkins & Lidgard, 2012; Pennell et al., 

2014a), where morphological change would be concen-
trated in cladogenetic events. An increase in morphological 
diversity can also occur in adaptive radiations, where lineage 
diversification is accompanied by phenotypic and ecological 
differentiation (Gillespie et al., 2020; Schluter, 2000). On the 
other hand, phenotypic and taxonomic diversity may not be 
related: in non-adaptive radiations, when species diversify 
without a clear association with ecological and morpholog-
ical differentiation (Gittenberger, 1991; Rundell & Price, 
2009); and in cryptic speciation, where speciation events 
are not accompanied by morphological distinction (Cerca 
et al., 2020).

Extinction rates can also influence patterns of morpho-
logical disparity: high extinction rates, whether they happen 
selectively or not, can increase the disparity of recent clades 
if they result in the survival of species that are morphologi-
cally distinct from each other (Hopkins, 2013). Although 
these scenarios are not mutually exclusive—present-day dis-
parity can arise as a combination of factors (Foote, 1993a; 
Hopkins & Gerber, 2018)—the different mechanisms that 
may give rise to distinct patterns of morphological diver-
sity can be tested by comparing speciation/extinction rates 
with morphological disparity (Adams et al., 2009; Alhajeri 
& Steppan, 2018; Lee et al., 2016; Rabosky & Adams, 2012; 
Rabosky et al., 2013). Furthermore, morphological patterns 
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can be investigated in the light of the estimation of rates of 
morphological evolution (Gingerich, 2001; Hansen et al., 
2022 and references therein).

Due to their species richness, high rates of diversifica-
tion, and morphological diversity (Fabre et al., 2012; Upham 
et al., 2019), rodents constitute an excellent group for studies 
on diversification. However, rodents also present cryptic spe-
ciation (e.g. Bastos et al., 2011; Suárez-Villota et al., 2018; 
Ojeda et al., 2021; Brito et al., 2022), and recent studies 
found a decoupled pattern between morphological dispar-
ity and diversification rates for several clades (Alhajeri & 
Steppan, 2018; Maestri et al., 2017; Rowe et al., 2011). 
Alhajeri and Steppan (2018) explicitly tested the relation-
ship between lineage diversity and morphological disparity 
across muroid rodents—describing a decoupled pattern of 
these variables, while Rowe et al. (2011) found little eco-
morphological divergence combined with higher diversifi-
cation rates among Rattus. Maestri et al. (2017) detected 
significantly higher morphological evolutionary rates in 
insectivorous species of sigmodontine rodents, but, in gen-
eral, species diversification in these rodents is not related to 
phenotypic specialization. While studies of major radiations 
offer useful insights on diversification patterns, testing the 
relationship between mechanisms at smaller phylogenetic 
and temporal scales might more clearly identify determi-
nant processes (Foote, 1993a; Ricklefs, 2005, 2006). Fur-
thermore, the evolutionary patterns observed in different 
taxonomic levels may be distinct (Michaud et al., 2022), 
justifying and requiring explorations of such patterns in less 
inclusive clades, even when more inclusive clades have been 
widely studied.

Sigmodontine rodents are the most diversified group of 
mammals in South America (D’Elía & Pardiñas, 2015a; Pat-
terson, 2020), where they inhabit practically all terrestrial 
biomes (Maestri & Patterson, 2016). The tribe Akodontini 
is the second-most diverse clade within Sigmodontinae, 
numbering 16 genera and 89 species, of which 46% belong 
to the speciose genus Akodon (D’Elía & Pardiñas, 2015b; 
Mammal Diversity Database, 2022). The tribe is endemic 
to South America (Maestri et al., 2019) and highly diverse 
in life history, including fossorial species such as Blarino-
mys and the woolly giant rat Kunsia, swamp rats such as 
Scapteromys, and cursorial and scansorial generalists such 
as species of Akodon and Necromys (D’Elía & Pardiñas, 
2015b). Akodontini includes a number of insectivorous spe-
cies, a trophic strategy derived several times independently 
accompanied by clear morphological and functional adap-
tations that expand the occupation of morphological space 
(Maestri et al., 2016a; Missagia et al., 2019, 2021).

The diversity in adaptive types of Akodontini appears to 
be reflected in skull morphology (Hershkovitz, 1966; Maes-
tri et al., 2022; Missagia et al., 2021), and a recent investi-
gation also pointed to their high morphological disparity 

(Maestri et al., 2022). Their diversity patterns makes them 
a good model to test the association between different mac-
roevolutionary processes, because the tribe consists of two 
major clades with contrasting patterns of morphological and 
lineage diversity: one of the clades has fewer species (15 
species; Mammal Diversity Database, 2022) and greater 
ecological and functional diversity (D’Elía & Pardiñas, 
2015b; Maestri et al., 2017, 2022; Missagia & Perini, 2018; 
Missagia et al., 2021; Reig, 1987), whereas the other has 
76 species (Mammal Diversity Database, 2022) with most 
of them numbering as cryptic species of Akodon. Here, we 
estimated and compared diversification rates, morphological 
evolutionary rates, and disparity, in order to understand how 
these factors interact when promoting heterogeneous diversi-
fication in this diverse tribe. We (1) characterized the tribe’s 
patterns of morphological disparity and lineage diversifica-
tion, contrasting the two major clades; and (2) tested whether 
morphological disparity and rates of morphological evolu-
tion are associated with their lineage diversification patterns.

Material and Methods

Data Collection

Ventral (745 specimens) and lateral views (606 specimens) 
of skulls and lateral views of mandibles (645 specimens) of 
59 species of Akodontini rodents (66% of species and 94% 
of recognized genera) were photographed using an Olym-
pus Tough TG-4 16MP digital camera, keeping a standard-
ised orientation, plane, and distance from the camera to the 
specimens (see Online Resource 1 for voucher list). We fol-
lowed the taxonomic arrangement of Patton et al. (2015) and 
Pardiñas et al. (2017), and whenever possible, specimens 
were chosen in order to encompass sexual and geographic 
variation for each species. The landmarks were chosen to 
represent the general shape of the skull and mandible in 
order to preserve their biological significance, represent 
functionally relevant structures, and include points that 
were recognizable enough to be scored with minimal error 
among specimens (see repeatability measurements below) 
(Zelditch et al., 2012). The landmarks of each view of the 
skull (ventral and lateral; Online Resource 2) and of the 
mandible were digitised using TpsDig2.30 software (Rohlf, 
2015). We evaluated the error associated with landmark 
digitization through the equation of Arnqvist & Martens-
son (1998), originally proposed to measure the repeatability 
of linear measurements but discussed in Fruciano (2016) 
as a repeatability measure for landmark digitization using 
the mean squares of Procrustes ANOVA. Landmarks were 
marked one day apart on replicated photos of ten individu-
als belonging to different Akodontini genera for each view. 
We calculated whether variation among repeated measures 
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is large compared to the variation among individuals. The 
closer this repeatability measurement gets to one, the smaller 
the variation among repeated measures of the same sub-
jects, which are reflective of measurement error (Arnqvist & 
Martensson, 1998; Fruciano, 2016). Repeatability was above 
97% for all views (Online Resource 3). Landmarks in some 
images that could not be marked due to skull damage were 
estimated with the ‘estimate.missing’ function using the 
thin-plate spline method (‘TPS’) in the package geomorph 
v. 4.0.4 (Adams et al., 2016) in R v. 4.2.0 (R Core Team, 
2022). As the majority of landmarks in ventral view repre-
sent mirrored points, we partitioned shape variation of this 
view into components of symmetric shape (Cardini, 2016), 
and the superimposed coordinates for the symmetric com-
ponent were used in subsequent analyses of shape variation.

For the phylogenetic comparative analyses, we considered 
the Sigmodontinae chronogram obtained from the supple-
mentary material of Maestri et al. (2017). This molecular 
tree was selected because it was the most comprehensive 
time-calibrated phylogeny available at the time our study 
was initiated, including all taxa for which we had morpho-
logical samples. The molecular data used to infer this tree 
was a preliminary version of the mammalian phylogeny pub-
lished by Upham et al. (2019). The complete tree contained 
additional 226 taxa, which were pruned with the function 
‘drop.tip’ in the package ape v. 5.6–2 to retain only the Ako-
dontini taxa for which morphological data were sampled.

PCA and Phylomorphospace

The landmarks were superimposed with a generalised pro-
crustes analysis (GPA) to remove the effects of scale, posi-
tion, and orientation. The mean Procrustes coordinates and 
the natural logarithm of the centroid size of each skull and 
mandible view were calculated for each species. The result-
ing GPA coordinates were submitted to a principal compo-
nent analysis using the ‘gm.prcomp’ function of geomorph 
to extract the scores for each principal component.

After confirming that the ln-transformed centroid sizes 
obtained from both cranial views and from the mandible 
were significantly, positively correlated (Online Resource 
4), we summarized size as the mean of the three estimates. A 
total of four datasets were considered independently in sub-
sequent analyses—skull lateral shape, skull ventral shape, 
mandible shape, and size. For exploratory visualization of 
the morphological disparity associated with shape, we plot-
ted the Akodontini phylogeny in the morphospace of the 
first two principal components with the function ‘phylomor-
phospace’ of the R package phytools v. 1.2–0 (Revell, 2012). 
Tips and branches were colored according to their estimated 
phenotypic rates.

Phylogenetic Signal

We calculated the phylogenetic signal in each of the four 
datasets using the K-statistic and its multivariate generaliza-
tion K-multi (Adams, 2014a; Blomberg et al., 2003), con-
sidering 1000 permutations to assess the significance of the 
results (α = 0.05).

Allometry and Morphological Disparity

The allometry on shape was evaluated by phylogenetic Pro-
crustes regressions with the ‘procD.pgls’ function, assum-
ing a Brownian Motion (BM) model of evolution (Adams, 
2014b). Significance was assessed after 1000 permutations 
(α = 0.05).

We compared the differences in disparity (i.e. Procrustes 
variances, Zelditch et al., 2012) between the two main clades 
of Akodontini (clade A—comprising the genera Scaptero-
mys, Kunsia, Blarinomys, Brucepattersonius, Lenoxus, and 
Bibimys; clade B—Akodon, Castoria, Deltamys, Necromys, 
Thalpomys, Thaptomys, Podoxymys, Juscelinomys, and 
Oxymycterus) with the function ‘morphol.disparity’ in geo-
morph. These analyses considered the model object result-
ing from allometry analyses, therefore comparing shape 
variation after accounting for size differences. We also per-
formed this analysis for the size dataset alone. Significance 
was assessed with 1000 permutations (α = 0.05). We also 
obtained partial disparities (Foote, 1993b) of each shape 
dataset in the form of Procrustes variances for each spe-
cies with the function ‘morphol.disparity’ in geomorph. To 
further characterize the patterns of morphological disparity 
across the phylogeny, we obtained the clade-wise dispari-
ties with the function ‘disparity’ in geiger v. 2.0.10 (Pennell 
et al., 2014b), calculated as the average squared Euclidean 
distance among all pairs of taxa descended from a given 
node.

Morphological Evolutionary Rates

For morphological evolutionary rates’ analyses, we 
restricted the dataset to the set of PCs representing ≥ 90% 
of the variance for each shape data—the first eight PCs for 
all datasets. This approach was taken to avoid a large num-
ber of among-PCs correlation parameters, leading to overly 
complex, time-consuming analyses.

Branch-specific morphological rates for each species 
were estimated with RevBayes 1.1 (Höhna et al., 2016) 
with a relaxed Brownian Motion (BM) model. This model 
considers that rates vary following a constant rate BM most 
of the time, but allow for a few rate shifts to be observed 
across the branches of the tree, i.e. a random local clock 
(Eastman et al., 2011). This provides a more conservative 



	 Evolutionary Biology

1 3

approach to modelling branch rate variation than allowing 
all branches to have independent rates (e.g. Castiglione 
et al., 2018). This approach is possibly more accurate too, 
since rates show phylogenetic signal as traits do (Sakamoto 
& Venditti, 2018). To shape datasets, we applied a multi-
variate version of this model that also considers correlations 
among variables (here, the PCs). These correlations, if not 
modelled, may lead to incorrect estimations when dealing 
with multivariate data (Adams et al., 2017). For multivariate 
datasets the BM model was assumed since a multivariate 
relaxed Ornstein–Uhlenbeck (OU) model is not currently 
available in RevBayes. Markov chain Monte Carlo analy-
ses were conducted with two independent runs (50,000 for 
size and 400,000 for shape datasets, sampling every 100 and 
400 steps, respectively), discarding the first 10% as burn-in. 
Convergence and mixing were inspected in Tracer 1.7 (Ram-
baut et al., 2018) with trace plots and an effective sample 
size > 200 for each parameter.

For the univariate dataset (size), we performed model 
selection using Bayes factors (Kass & Raftery, 1995). For 
that, marginal likelihoods were estimated with stepping-
stone sampling analyses comparing BM and OU models. 
Two independent runs were conducted, with 50 steps of 
1000 generations each, sampling at every 1000. An initial 
burn-in of 10,000 generations was applied. Reliability was 
assessed inspecting the consistency in estimates of marginal 
likelihoods between the two runs. A univariate relaxed BM 
version was selected for size data, with this model being 
strongly favored relative to the relaxed OU (2*log Bayes 
Factor = 8.7, Kass & Raftery, 1995). These analyses used 
modified versions of the scripts available in the page of the 
aforementioned software, with default prior configurations, 
except for the expected number of rate shifts.

In order to estimate the best number of rate shifts to be 
used as prior information for the RevBayes analyses, we 
performed a data-driven rate-shift analysis with the R pack-
age PhylogeneticEM (Bastide et al., 2018), considering a 
scalar OU model for the multivariate shape datasets, which 
accounts for the possible interdependence among traits, 
whereas a simple OU model was considered for the univari-
ate size dataset. Although the use of OU models here creates 
a mismatch with RevBayes estimation of branch rates using 
BM, PhylogeneticEM inferences were only applied heuristi-
cally to obtain a reasonable estimate of the purported num-
ber of rate shifts in our datasets. To the best of our knowl-
edge, a multivariate method for automatically detecting the 
number of rate shifts across branches (and not time) using 
BM was not available, excepting for the variable rates model 
implemented in BayesTraits (Venditti et al., 2011). Still, 
simulations have shown that this model sometimes overes-
timates rate variation on individual branches, inflating the 
number of rate shifts (Chira & Thomas, 2016). Preliminary 
runs suggest this may be the case for our datasets (analyses 

not shown). Therefore, this approach was not pursued further 
in this study.

The estimated rates were compared between clades A and 
B with regressions using the ‘procD.pgls’ function in geo-
morph. For shape rates, we included size rates as covariates, 
applying a type I (i.e. sequential) sum of squares, therefore 
comparing between-clade rate variation that is unrelated to 
size differences. Significance was assessed after 1000 per-
mutations (α = 0.05).

Diversification Rates

Speciation and extinction rates were estimated with BAMM 
2.5.0 (Rabosky et al., 2013; Rabosky, 2014; Online Resource 
5). Priors were obtained with the R package BAMMtools v. 
2.1.10 (Rabosky et al., 2014). We conducted two runs, with 
4 chains and 10,000,000 generations each, sampling every 
5000. A burn-in of 25% was applied and convergence was 
assessed with R package coda (Plummer et al., 2006), with 
the same criteria used for RevBayes analyses. We accounted 
for the incomplete taxonomic sampling by providing sample 
probabilities for genera (according to species recognized by 
the Mammal Diversity Database, 2022), and summarized 
our results, obtaining tip speciation and extinction rates 
with BAMMtools. Speciation and extinction rate differences 
between clades A and B, and between the genus Akodon 
and other akodontines were evaluated using regressions 
with the ‘procD.pgls’ function in geomorph. Significance 
was assessed after 1000 permutations (α = 0.05).

Correlation Between Diversification Rates 
and Phenotypic Variables

In order to test if speciation and extinction rates could have 
been influenced by morphological variation in shape dis-
parity, size or rates of evolution, we applied the Structured 
Rate Permutations on Phylogenies (STRAPP) method 
(Rabosky & Huang, 2016), using the BAMMtools function 
‘traitDependentBAMM’. This method uses a state-dependent 
model of diversification which requires repeated associa-
tions between diversification rates and the variables under 
comparison beyond the null expectancy obtained by struc-
tured permutations (Rabosky & Huang, 2016). Significance 
was assessed with a two-tailed test, after 1000 permutations 
(α = 0.05). A Holm correction for multiple comparisons was 
applied to p-values using the stats function ‘p.adjust’.

Additionally, we used Phylogenetic Generalised Least-
Square (PGLS) regressions to test if partial disparities and 
rates of morphological and size evolution could be predicted 
by speciation and extinction rates. We also evaluated if par-
tial disparities and morphological evolutionary rates were 
associated in each shape dataset. The variables were stand-
ardized into z-scores to enhance interpretability (Mundry, 
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2014), and the analyses were conducted using the ‘procD.
pgls’ function in geomorph. Significance was assessed after 
1000 permutations (α = 0.05), and a Holm correction for 
multiple comparisons was applied to p-values.

The R, RevBayes and BAMM codes and data for repro-
ducing all analyses are available at https://​github.​com/​rmiss​
agia/​diver​sific​ation-​Akodo​ntini.

Results

PCA, Phylomorphospace and Morphological 
Evolutionary Rates

The distribution of species in the morphospace for each 
shape dataset is depicted in Figs. 1, 2 and 3.

The first component of the ventral view of the skull 
encompasses 30.2% of the overall variance and, in line 
with the lateral view, shows differences in rostral length 
and width of the zygomatic plate, with long rostra and nar-
row zygomatic plates on the negative end and short rostra 
and broad zygomatic plates on the positive end (Fig. 1). 
The second PC comprises 27.5% of the variation and is 
related to anteroposterior shortening of the skull and dor-
soventral enlargement of the braincase towards positive 
values.

For the lateral view of the skull, the first principal com-
ponent (PC) accounts for 52.4% of total variation, and is 

mainly related to shape differences of the rostrum and 
zygomatic plate, with shorter rostra and wider zygomatic 
plates towards more negative values and longer rostra and 
narrower zygomatic plates towards more positive values 
(Fig. 1). The second PC, accounting for 13.9% of the vari-
ation, is related to differences on the dorsoventral height of 
the braincase and point of insertion of the zygomatic plate, 
with higher braincases and anteriorly displaced zygomatic 
plates towards negative values and lower braincases and 
posteriorly displaced zygomatic plates towards more posi-
tive values (Fig. 2).

In the PCA results for the shape of the mandible (lateral 
view), the first PC accounts for 43.6% of the total vari-
ation, and PC2 for 18.2%. The first component shows a 
general compression of the dorsoventral axis combined 
with an anteroposterior elongation of the mandible, and 
a posterior displacement of the masseteric ridge towards 
higher values, while the second PC is related, in addition 
to differences in the position of the masseteric ridge that 
is closer to the first molar alveolus towards more nega-
tive values, to changes in the procumbency of the incisor, 
being more procumbent in species with more positive val-
ues; and to an anterior displacement of the angular pro-
cess, also toward more positive values (Fig. 3).

The distribution of species in the morphospace shows 
that clade A species are usually more dispersed in all 
shape datasets (Figs. 1, 2, 3). Clade A is also associated 
with higher morphological evolutionary rates than clade 

Fig. 1   Phylomorphospace of 
the ventral view of the skull, 
depicting the first two principal 
components, their associ-
ated variance, and outlines 
of extreme morphologies on 
each axis. Nodes and branches 
colored according to morpho-
logical evolutionary rates. Tri-
angles indicate species of clade 
A, and circles of clade B. Not 
all species names are exhibited, 
for clarity (Color figure online)
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Fig. 2   Phylomorphospace of 
the lateral view of the skull, 
depicting the first two principal 
components, their associ-
ated variance, and outlines 
of extreme morphologies on 
each axis. Nodes and branches 
colored according to morpho-
logical evolutionary rates. Tri-
angles indicate species of clade 
A, and circles of clade B. Not 
all species names are exhibited, 
for clarity (Color figure online)

Fig. 3   Phylomorphospace of 
the lateral view of the mandible, 
depicting the first two principal 
components, their associ-
ated variance, and outlines 
of extreme morphologies on 
each axis. Nodes and branches 
colored according to morpho-
logical evolutionary rates. Tri-
angles indicate species of clade 
A, and circles of clade B. Not 
all species names are exhibited, 
for clarity (Color figure online)
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B in all analyses (Figs. 1, 2, 3), and these differences were 
found to be statistically significant even after accounting 
for differences in clade size (Table 1, Online Resource 6). 
For skull shape in lateral view, rates among taxa in clade 

A are more heterogeneous, if compared with the same 
clade in other datasets, with Bibimys showing the highest 
rates and Scapteromys the lowest (Figs. 1 and 4, Online 
Resource 5). Clade B shows relatively uniform rates for 

Table 1   Summary of the disparity, morphological evolutionary rates and phylogenetic signal for the four datasets

Proc. Var. procrustes variance, Pairwise abs. dist pairwise absolute distances between clades, Phylo. sig. phylogenetic signal, Avg. rates average 
rates
F-statistics for regressions performed with 'procD.pgls.'
Significant results are marked with *

Dataset Proc. var. Clade 
A

Proc. var. Clade 
B

Pairwise abs. 
dist

Phylo. sig. 
(Kmult)

Avg. rate Clade 
A

Avg. rate Clade 
B

F-statistic (rates)

Skull ventral 0.00250 0.00150 0.00100* 0.68570* 0.00015 0.00004 179.05756*
Skull lateral 0.00360 0.00230 0.00130* 0.61280* 0.00024 0.00006 51.49009*
Mandible 0.00520 0.00260 0.00260* 0.64880* 0.00023 0.00007 993.50763*
Size 0.11120 0.01340 0.09780* 1.28800* 0.00515 0.00471 24.31284*

Oxymycterus rufus
Oxymycterus quaestor
Oxymycterus paramensis
Oxymycterus hiska

Oxymycterus nasutus
Oxymycterus dasytrichus

Oxymycterus amazonicus
Oxymycterus delator

Juscelinomys huanchacae

Thaptomys nigrita

Thalpomys lasiotis
Thalpomys cerradensis
Podoxymys roraimae

Necromys lactens
Necromys urichi

Necromys lasiurus
Necromys lenguarum
Necromys obscurus

Necromys amoenus

Castoria angustidens
Deltamys kempi
Akodon mimus

Akodon aerosus
Akodon affinis

Akodon orophilus
Akodon mollis
Akodon torques

Akodon varius
Akodon simulator
Akodon siberiae
Akodon budini
Akodon albiventer
Akodon toba
Akodon dolores
Akodon dayi
Akodon iniscatus

Akodon cursor
Akodon reigi
Akodon montensis

Akodon paranaensis
Akodon mystax

Akodon juninensis

Akodon fumeus
Akodon kofordi

Akodon azarae

Akodon boliviensis
Akodon spegazzinii
Akodon sylvanus
Akodon lutescens
Akodon subfuscus

Akodon lindberghi

Bibimys chacoensis
Bibimys labiosus

Lenoxus apicalis

Brucepattersonius soricinus
Blarinomys breviceps

Kunsia tomentosus

Scapteromys tumidus
Scapteromys aquaticus

7 6 5 4 3 2 1 0 RV RL RM RS DV DL DM SZ SP EX

-2

0

2

SD units

A

RV RL RM RS DV DL DM SZ SP EX

0.07000
0.08000
0.09000
0.10000

0.57000
0.58000
0.59000
0.60000
0.61000
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cranial and mandibular shape (Figs. 1–4). For size, on the 
other hand, there is a gradual pattern of rate variation, with 
Juscelinomys plus Oxymycterus being associated with the 
highest rates and Akodon with the lowest (Fig. 4, Online 
Resource 5).

Morphological Disparity and Phylogenetic Signal

The PGLS regression of shape on log of centroid size was 
significant for the shape datasets of the lateral views of the 
skull and mandible, indicating shape allometry of the group, 
but not for the ventral view of the skull (Online Resource 
7). Clade A showed higher disparity than Clade B, with this 
difference being statistically significant (Fig. 4, Table 1).

Results of node disparity analyses indicated that most of 
the cranial, mandibular and size disparity is concentrated 
towards the root of the phylogeny and is much higher among 
lineages of clade A, whereas those of clade B showed lower 
morphological diversity (Fig. 5, Online Resource 8). The 
phylogenetic signal was statistically significant for all four 
datasets (Table 1).

For the ventral view of the skull, most of the disparity 
is related to the root node of clade A, followed by the node 
uniting Bibimys and Lenoxus + Blarinomys + Brucepatter-
sonius, and, to a lesser degree, the node of clade Blarino-
mys + Brucepattersonius (Fig. 5A). Regarding the lateral 
view of the skull, the root of clade A and the node uniting 
Bibimys and a clade composed of Lenoxus, Blarinomys and 
Brucepattersonius also account for most of the disparity 
(Fig. 5B). Another node accounting for a noticeable amount 
of the total disparity was that uniting of Thalpomys and 
Podoxymys (Fig. 5B). The nodes responsible for most of the 
mandibular disparity are the same as those reported for the 
ventral view of the skull plus that of Scapteromys + Kunsia 
(Fig. 5C). Size disparity is mostly associated with a single 
node, the root of clade A, with all other nodes showing con-
siderably less morphological diversity (Fig. 5D).

Aligned with the results above, partial disparities 
were in general greater for taxa of clade A than clade B 
(Fig. 4, Online Resource 5). Nevertheless, some notable 
exceptions to this pattern are evident, such as higher par-
tial disparities for Oxymycterus quaestor (skull, lateral 
view) and Akodon mimus (mandible), or lower disparity 
for Scapteromys aquaticus, Brucepattersonius soricinus 
and Bibimys chacoensis (all three shape datasets, Fig. 4, 
Online Resource 5).

Diversification Rates

The diversification analysis performed with BAMM indi-
cates a gradual pattern, with the null model (i.e. with 
no rate shifts) receiving a much higher support than the 

alternatives (Online Resources 9 and 10), although the 
95% credible set also includes a solution with one rate-
shift associated with the genus Akodon (or the genus 
excluding A. mimus in the other BAMM run), but these 
rate-shift configurations were associated with a much 
lower posterior probability (< 3%). Tip speciation rates 
for Akodon were slightly higher than those of remain-
ing akodontines (Fig. 4, Online Resource 5 and 11), and 
this difference was statistically significant (Table 2). Dif-
ferences between the extinction rates of Akodon vs. all 
other akodontines and differences in speciation or extinc-
tion rates between clades A and B were not significant 
(Table 2, Online Resource 11).

Correlation Between Diversification Rates 
and Phenotypic Variables

The results of both STRAPP (Table 3) and PGLS (Fig. 6, 
Table 4, Online Resource 12) indicated that none of the 
tested correlations were significant, suggesting that diversi-
fication rates and phenotypic patterns were decoupled during 
the evolution of akodontine rodents.

Discussion

In this study, we used tip values of speciation, extinction, 
disparity and morphological evolutionary rates to describe 
the diversification patterns in one of the most diverse groups 
of Neotropical rodents, uncovering a decoupled dynamic 
between morphological disparity and species diversifica-
tion. The diversification of Akodontini resulted in two main 
lineages that contrast in species richness, indicating hetero-
geneous speciation-extinction dynamics, which in turn is 
inversely related to their disparity patterns.

Several studies explicitly tested the relationship between 
lineage diversification and phenotypic disparity, with results 
ranging from an association between rates of diversifica-
tion and morphological evolution (Rabosky et al., 2013; 
Cooney & Thomas, 2021), to its absence (Adams et al., 
2009; Alhajeri & Steppan, 2018; Lee et al., 2016; Rabosky 
& Adams, 2012; Slater et al., 2010). While most studies 
consider only living species (Adams et al., 2009; Alhajeri & 
Steppan, 2018; Burbrink et al., 2012; Lee et al., 2016; Slater 
et al., 2010; Zelditch et al., 2015), the inclusion of fossils 
allows inferring patterns including extinction mechanisms 
(Foote, 1993a; Hopkins, 2013). In general, these studies are 
not directly comparable because they use different method-
ologies and proxies to address morphological diversity and 
species diversity (Cooney & Thomas, 2021). The present 
study aimed to contribute to our knowledge of this subject 
by evaluating the association between estimates of specia-
tion/extinction, rates of morphological evolution and partial 
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Fig. 5   Node disparity values, with node size displayed proportional 
to disparity. A Skull, in ventral view; B skull, in lateral view; C man-
dible, in lateral view; D size (natural logarithm of the centroid size). 

Clade A colored with pink and Clade B with green. Time scale in 
millions of years ago (Color figure online)

Table 2   Summary of the speciation and extinction rates for clades A and B, and for Akodon and other (non-Akodon) akodontines

F-statistics for regressions performed with 'procD.pgls'
Avg.rates average rates
Significant results are marked with *

Rate Avg. rate Clade A Avg. rate Clade B F-statistic (rates) 
Clade A × Clade B

Avg. rate Akodon Avg. rate other F-statistic (rates) 
Akodon × other

Speciation 0.57970 0.60195 0.55044 0.61668 0.58056 66.35381*
Extinction 0.08964 0.08346 1.50430 0.08678 0.08172 2.10412

Table 3   Results of STRAPP 
correlation tests for the two 
MCMC runs performed in 
BAMM. Correlations were not 
significant

Avg. cor average correlation, p-adj. adjusted p-value, with Holm correction for multiple comparisons

Phenotype Rate Avg. cor. 1 p-value 1 p-adj. 1 Avg. cor. 2 p-value 2 p-adj. 2

Skull ventral rates Speciation  − 0.04341 0.98400 1.00000  − 0.05596 0.98000 1.00000
Skull lateral rates Speciation 0.00523 0.97200 1.00000 0.00173 0.97900 1.00000
Mandible rates Speciation 0.00562 0.97700 1.00000 0.00078 0.98000 1.00000
Size rates Speciation  − 0.04599 0.97600 1.00000  − 0.03174 0.98700 1.00000
Skull ventral disparity Speciation  − 0.01793 0.98100 1.00000  − 0.01643 0.97800 1.00000
Skull lateral disparity Speciation  − 0.03354 0.97900 1.00000  − 0.02860 0.97300 1.00000
Mandible disparity Speciation  − 0.02903 0.96900 1.00000  − 0.02728 0.97500 1.00000
Size Speciation  − 0.03400 0.98300 1.00000  − 0.02982 0.98100 1.00000
Skull ventral rates Extinction  − 0.02326 0.97300 1.00000  − 0.01636 0.98000 1.00000
Skull lateral rates Extinction 0.01483 0.97600 1.00000 0.01649 0.97500 1.00000
Mandible rates Extinction 0.00999 0.97000 1.00000 0.01353 0.95900 1.00000
Size rates Extinction  − 0.00397 0.98600 1.00000  − 0.02029 0.98000 1.00000
Skull ventral disparity Extinction  − 0.01161 0.98100 1.00000  − 0.00883 0.98600 1.00000
Skull lateral disparity Extinction  − 0.01754 0.97100 1.00000  − 0.00633 0.96000 1.00000
Mandible disparity Extinction  − 0.01673 0.97800 1.00000  − 0.00748 0.96700 1.00000
Size Extinction  − 0.01149 0.97300 1.00000  − 0.01899 0.97000 1.00000
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disparities for each species, contrary to most of the previous 
studies, which considered clade estimates (e.g. Adams et al., 
2009; Rabosky & Adams, 2012; Rabosky et al., 2013; Zeld-
itch et al., 2015; Lee et al, 2016; Alhajeri & Steppan, 2018) 
or tip values, but investigated this association for a smaller 
number of proxies (e.g. Rabosky et al., 2014; Michaud et al., 
2018, 2022; Cooney & Thomas, 2021). Furthermore, the 
patterns of diversity and disparity are idiosyncratic for each 
clade, so that conclusions are difficult to extrapolate to other 
groups; that is, patterns found at broad macroevolutionary 
scales may not translate to less inclusive clades, and vice 
versa (Cooney & Thomas, 2021). However, the possible 
mechanisms can be interpretable for the clade in question.

Alhajeri and Steppan (2018) found a similar pattern 
for Akodontini in their more comprehensive analysis of 
Muroidea, with the clade comprising Kunsia, Scapteromys, 
Lenoxus and Brucepattersonius exhibiting higher dispar-
ity and lower diversification values in opposition to lower 
disparity and higher diversification for the clade including 
Akodon, Thaptomys, Deltamys and Necromys. They attrib-
uted this pattern to the different ages of lineages affecting 
the time for accumulation of morphological variation, with 
older clades showing higher disparities, and younger clades 
presenting high diversity coupled with low disparity, but this 
pattern may arise in four different ways. First, it could be 
due to different rates of morphological evolution (Hopkins, 
2016), causing clade A species to become more distinct from 
one another in the same time interval as clade B, which, 
in turn, experienced lower rates. Second, it could reflect 
equivalent rates of morphological evolution between line-
ages, but over different time periods (Alhajeri & Steppan, 
2018; Erwin, 2007); this seems unlikely given the highly 

similar divergence times of clade A and clade B, that is, 
approximately 6 million years according to the dated tree 
of Maestri et al. (2017). The third option is that only part of 
the evolutionary history of clade A is visible, which might 
include additional species that went extinct during that time 
interval. These species would fill the morphospace, lessen-
ing the disparity of extant species and comprising part of a 
morphological continuum (Ciampaglio et al., 2001; Foote, 
1997; Hopkins, 2013; Sidlauskas, 2008). A final scenario 
to be considered is the one that arises in response to higher 
speciation rates accompanied by morphological stasis in 
clade B (Foote, 1993a).

The above-mentioned scenarios are not mutually exclu-
sive, and our results suggest that multiple factors may be 
involved. Considering the dated tree (Maestri et al., 2017), 
the species and genera in clade A present higher rates of 
morphological diversification (Figs. 1,2, 3, and 4) and had 
more time of independent evolution to diverge phenotypi-
cally than most species of clade B. Alternatively, the genus 
Akodon, which accounts for 55% of species of clade B, pre-
sents higher diversification rates and occupies more cen-
tral areas of the morphospace. Akodon is one of the most 
speciose genera of Sigmodontinae with 42 species (Mam-
mal Diversity Database, 2022), and presents cryptic species 
complexes (Astúa et al., 2015; Geise et al., 2001; Gonçalves 
et al., 2007; Pardiñas et al., 2015). Our results agree with 
previous findings of higher diversification rates for the genus 
(Parada et al., 2015; Reis et al., 2018), which fit the pattern 
of younger lineages having less of the morphological dispar-
ity documented in older groups (Alhajeri & Steppan, 2018; 
Collar et al., 2005; Erwin, 2007; Rowe et al., 2011). Besides, 
several ecological and life history factors not considered here 
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Fig. 6   Graphical summary of the regression models evaluate with 
PGLS analyses considering diversification (speciation and extinc-
tion) and phenotypic (disparity, size and evolutionary rates) variables 

as Z-scores. The regression lines with the intercepts and slopes are 
depicted in red (Color figure online)
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may also be correlated with both patterns of lineage dispar-
ity and diversification of clade B—such as biogeographical 
history and geological events (Maestri et al., 2017, 2019). 
Akodon is widely distributed in different biomes of South 
America (Geise et al., 2001; Gonçalves et al., 2007; Maestri 
et al., 2019), and at least part of its diversification seems to 
be related to differences in climatic niches (Reis et al., 2018).

The differential extinction scenario (i.e. third scenario) 
seems unlikely according to our results, as we found no dif-
ferences in extinction rates between the two main lineages. 
However, this possibility cannot be ruled out considering 
the ongoing discussion about what can be inferred about 
past diversification processes from extant timetrees alone, 
including the caveats of estimating extinction rates from 
molecular phylogenies in the absence of fossil data (Louca 
& Pennell, 2021; Rabosky, 2010), and the identifiability of 
alternative speciation and extinction parameters (Louca & 
Pennell, 2020, but see Morlon et al., 2022). Unfortunately, 
most fossil records of akodontines correspond to living spe-
cies (Pardiñas et al., 2002) and the few records of certainly 
extinct species are difficult to place phylogenetically, owing 

to the fragmentary state of the material (Pardiñas et al., 
2002), limiting their use in assessing this scenario.

In Akodontini, speciation and extinction rates do not 
substantially vary through time or between clades and are 
mostly decoupled from morphological evolutionary rates or 
disparity, a pattern that is not uncommon (Bromham et al., 
2002; Adams et al., 2009; Hopkins, 2013; Zelditch et al., 
2015; Alhajeri & Steppan, 2018; but see Rabosky et al., 
2013). Our results also suggest the absence of significant 
association of partial disparities and tip morphological rates 
of evolution, although both are significantly larger in clade 
A (Fig. 4), indicating that those metrics cannot be taken 
as proxies for one another (Adams et al., 2009; Alhajeri & 
Steppan, 2018; Michaud et al., 2018). Despite apparent dif-
ferences (Fig. 4), the non-significance between the variables 
of diversification versus morphological diversity is probably 
due to their clustered distribution in the phylogeny (Fig. 4), 
with clade A concentrating high values of disparity and 
clade B lower values, together with higher speciation values 
in Akodon. This means that we have insufficient independent 
points to test correlation. Felsenstein (1985) described this 

Table 4   Results of PGLS regression models

p-adj. adjusted p − value, with Holm correction for multiple comparisons
Significant results are marked with *

PGLS models Intercept Slope F-statistic Effect size p-value p-adj

Skull ventral rates × speciation rates 0.93243  − 0.09549 0.70123 0.28708 0.40900 1.00000
Skull lateral rates × speciation rates 0.84749  − 0.01562 0.01421  − 1.27749 0.88700 1.00000
Mandible rates × speciation rates 0.92274  − 0.05232 0.22595  − 0.35361 0.64700 1.00000
Size rates × speciation rates 0.72226  − 0.23808 4.26426 1.73252 0.03600* 0.82800
Skull ventral disparity × speciation rates 0.52938  − 0.06034 0.01855  − 1.30686 0.88600 1.00000
Skull lateral disparity × speciation rates 0.25662  − 0.35282 0.54329 0.16003 0.46900 1.00000
Mandible disparity × speciation rates 0.28745  − 0.24027 0.35420  − 0.07125 0.54500 1.00000
Size × speciation rates 0.19225  − 0.41057 2.67570 1.23903 0.11100 1.00000
Skull ventral rates × extinction rates 1.00012 0.07954 2.06989 1.00614 0.16500 1.00000
Skull lateral rates × extinction rates 0.82863 0.17030 8.00353 2.15904 0.00900* 0.21600
Mandible rates × extinction rates 0.95141 0.08784 2.76278 1.20589 0.12000 1.00000
Size rates × extinction rates 0.91930 0.04978 0.72989 0.40839 0.36000 1.00000
Skull ventral disparity × extinction rates 0.58245  − 0.00386 0.00031  − 2.08398 0.98400 1.00000
Skull lateral disparity × extinction rates 0.61802  − 0.29086 1.56120 0.85211 0.19600 1.00000
Mandible disparity × extinction rates 0.50490  − 0.04743 0.05706  − 0.98161 0.81300 1.00000
Size × extinction rates 0.55748  − 0.04778 0.14420  − 0.49581 0.68600 1.00000
Skull ventral rates × skull ventral disparity 1.01546 − 0.00035 0.00010  − 2.12685 0.98900 1.00000
Skull lateral rates × skull lateral disparity 0.89177  − 0.05462 2.38707 1.20291 0.10000 1.00000
Mandible rates × mandible disparity 0.96263 0.01109 0.09463  − 0.72614 0.76300 1.00000
Size rates × size 0.91455 0.02595 0.17777  − 0.49889 0.69200 1.00000
Skull ventral disparity × skull ventral rates 0.58702  − 0.00522 0.00010  − 2.28725 0.99200 1.00000
Skull lateral disparity × skull lateral rates 1.19629  − 0.73588 2.38707 1.15066 0.10800 1.00000
Mandible disparity × mandible rates 0.35116 0.14947 0.09463  − 0.72989 0.75700 1.00000
Size × size rates 0.43712 0.11980 0.17777  − 0.41112 0.67300 1.00000
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scenario as a reason for including evolutionary history in 
comparative analyses.

Clade A apparently achieved high levels of morphologi-
cal specialization that seem to accompany corresponding 
ecological diversity, since this group accounts for most of 
the specialised dietary and locomotory habits found in the 
tribe (Hershkovitz, 1966; Maestri et al., 2016a, 2017; Mis-
sagia et al., 2019, 2021). Stable isotope analysis retrieves 
this clade as the one with the greatest trophic niche diversity 
(Missagia et al., 2019), including species that feed mainly 
on C4 plants (e.g. Kunsia tomentosus and Bibimys labiosus) 
as well as specialist insectivores (e.g. Blarinomys breviceps, 
Lenoxus apicalis, and Brucepattersonius soricinus). Trophic 
diversity may explain the morphological disparity of the 
clade, considering that the principal shape changes identi-
fied here involve functional characteristics of the masticatory 
complex (see Samuels, 2009; Maestri et al., 2016a; Missagia 
et al., 2021). In addition to the ecologically specialized spe-
cies of clade A, the genus Oxymycterus of specialized insec-
tivores of clade B (Missagia et al., 2021) also shows high 
rates of morphological disparity (Fig. 4). The mode of loco-
motion and substrate utilization can also affect cranial mor-
phology (Agrawal, 1967; Camargo et al., 2019), although 
they are generally better reflected in postcranial features 
(Samuels & van Valkenburgh, 2008; Tavares et al., 2021). 
Locomotion and substrate use may have affected the mor-
phological evolution of some akodontines like Blarinomys, 
which has a unique skull morphology that combines char-
acteristics related to both insectivory and fossoriality (Geise 
et al., 2008; Missagia & Perini, 2018), and presents some 
of the higher partial disparities and rates of morphologi-
cal evolution (Fig. 4). Kunsia tomentosus is also described 
as semifossorial (Bezerra & Pardiñas, 2016; Hershkovitz, 
1966; Maestri et  al., 2017), and some of the demands 
imposed by excavation, aided by use of the incisors, may 
explain the distinctiveness of its skull among akodontines 
(Agrawal, 1967; Stein, 2000). Other studies that proposed 
to describe the morphological variation of vertebrate skulls, 
and whether and how it is linked to ecological aspects, found 
similar patterns, with ecologically specialised species occu-
pying extreme points in the morphospace and increasing the 
overall morphological diversity (e.g. Claude et al., 2004; 
Stayton, 2005; Samuels, 2009; Jones et al., 2015; Arbour 
et al., 2019; Zelditch et al., 2020. Felice et al., 2021), show-
ing this is a common result of ecological specialization on 
morphological diversification.

Morphological variation appears as a result of several 
patterns, including ecological and functional adaptations, 
phylogenetic relationships, and also size (Foote, 1997; Hop-
kins & Gerber, 2018). Clade A is more heterogeneous in 
size (Fig. 5D), which may explain part of its morphological 
disparity considering the positive allometry for the group as 
a whole. Maestri et al. (2017) found larger sizes driven by 

herbivorous diet and semifossorial or semi-aquatic habits for 
a more comprehensive sample of sigmodontine rodents that 
included Kunsia and Scapteromys, an herbivorous semifos-
sorial and insectivorous semi-aquatic species, respectively, 
also included in our sample. These two species increase the 
size range of Akodontini and contribute to the size heteroge-
neity of clade A, with Kunsia reaching up to 600 g (Bezerra 
& Pardiñas, 2016) as opposed to the smaller sizes of Bla-
rinomys, Bibimys, and Brucepattersonius (approximately 
30 g; Maestri et al., 2016b). In clade B, most species cluster 
around smaller sizes (approximately 30 g; Maestri et al., 
2016b), with the exception of some Oxymycterus species 
that can reach 80 g (Maestri et al., 2016b). Increase in size 
can permit access to different resources (Price, 1983), and 
larger species of rodents can be more ecologically derived 
(Renaud et al., 2007). Despite being context-dependent, a 
recent study in Australia found evidence of greater risks 
of extinction in larger rodents (Roycroft et al., 2021), and, 
although not yet tested for Neotropical cricetids, it indicates 
the possibility of differential diversification dynamics related 
to body size and evolutionary rates. Body size may, in turn, 
interact with the historical processes and environmental 
gradients involved in diversification (Maestri et al., 2016b).

The skull of vertebrates may be viewed as a morphologi-
cal structure that accumulates variation in response to eco-
logical adaptations for being essential in interactions with 
the external environment (Novacek, 1993), which is one of 
the reasons it is used so often in studies of morphological 
disparity (e.g. Jones et al., 2015; Arbour et al., 2019; Bardua 
et al., 2019; Felice et al., 2021). However, the skull may 
instead fit a “one-to-many” pattern, where similar morpholo-
gies can serve distinct ecological functions, which can have 
different impacts on lineage diversification (Maestri et al., 
2017; Zelditch et al., 2020). This can lead to a pattern of lit-
tle morphological differentiation, even in scenarios where 
diversification could be triggered by ecological opportunity 
(Maestri et al., 2017; Rundell & Price, 2009). However, the 
greater disparity in ecologically specialised species of clade 
A is obvious. Regardless of whether small clades have fewer 
species due to higher rates of extinction or lower rates of 
diversification, there are indications that these clades may 
be pushed to the periphery of an evolutionary radiation in 
morphospace or even in geographic space (Ricklefs, 2005). 
This peripheral occupation may be related to their persis-
tence for longer periods that could lead to morphological 
and ecological distinction (Ricklefs, 2005). The low climatic 
niche diversification rate found by Reis et al., (2018) for 
most species in clade A indicates some degree of habitat 
specialization that may have allowed these species to persist 
in particular environments for longer time periods.

The diversification dynamics of Akodontini can be sum-
marized as a contrast between the two main lineages, with 
one of the clades showing high rates of morphological 
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disparity combined with low diversity, while the other pre-
sents higher diversity and lower morphological disparity. 
This pattern can be obscured by more comprehensive stud-
ies, which underscores the difficulty of establishing more 
general patterns for mammals or vertebrates in general. Our 
results help to elucidate the patterns of morphological diver-
sification of a diverse group of Neotropical rodents, adding 
to the evidence of the possible lack of connection between 
morphological evolution and diversification in some groups.
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